11 páginas, 4 figuras y 3 tablas. ; Plants form mutualistic relationship with a variety of belowground fungal species. Such a mutualistic relationship can enhance plant growth and resistance to pathogens. Yet, we know little about how interactions between functionally diverse groups of fungal mutualists affect plant performance and competition. We experimentally determined the effects of interaction between two functional groups of belowground fungi that form mutualistic relationship with plants, arbuscular mycorrhizal (AM) fungi and Trichoderma, on interspecific competition between pairs of closely related plant species from four different genera. We hypothesized that the combination of two functionally diverse belowground fungal species would allow plants and fungi to partition their symbiotic relationships and relax plant–plant competition. Our results show that: 1) the AM fungal species consistently outcompeted the Trichoderma species independent of plant combinations; 2) the fungal species generally had limited effects on competitive interactions between plants; 3) however, the combination of fungal species relaxed interspecific competition in one of the four instances of plant–plant competition, despite the general competitive superiority of AM fungi over Trichoderma. We highlight that the competitive outcome between functionally diverse fungal species may show high consistency across a broad range of host plants and their combinations. However, despite this consistent competitive hierarchy, the consequences of their interaction for plant performance and competition can strongly vary among plant communities. ; MPT acknowledges funding from the German Research Foundation (DFG, TH 2307/1‐1). This project has received funding from the European Union's Horizon 2020 research and Innovation programme under grant agreement No 765290. AMM, NMvD and AB further acknowledge the COST Action FA1405. AM acknowledges funding from the program for attracting talent to Salamanca from Fundación Salamanca Ciudad de Cultura y Saberes. Further support came from the German Centre for Integrative Biodiversity Research Halle–Jena–Leipzig, funded by the German Research Foundation (FZT 118). Author contributions ‐ MPT conceived the idea. MPT, NvD, NE, CR and AM‐M developed the ideas for the experiment. VQ, MPT and AM‐M performed the experiment. MPT analyzed the data and wrote the first draft of the manuscript. All authors contributed to manuscript revisions. ; Peer reviewed
Biological invasions pose a serious threat to biodiversity and ecosystem functioning across ecosystems. Invasions by ecosystem engineers, in particular, have been shown to have dramatic effects in recipient ecosystems. For instance, invasion by earthworms, a below-ground invertebrate ecosystem engineer, in previously earthworm-free ecosystems alters the physico-chemical characteristics of the soil. Studies have shown that such alterations in the soil can have far-reaching impacts on soil organisms, which form a major portion of terrestrial biodiversity. Here, we present the first quantitative synthesis of earthworm invasion effects on soil micro-organisms and soil invertebrates based on 430 observations from 30 independent studies. Our meta-analysis shows a significant decline of the diversity and density of soil invertebrates in response to earthworm invasion with anecic and endogeic earthworms causing the strongest effects. Earthworm invasion effects on soil micro-organisms were context-dependent, such as depending on functional group richness of invasive earthworms and soil depth. Microbial biomass and diversity increased in mineral soil layers, with a weak negative effect in organic soil layers, indicating that the mixing of soil layers by earthworms (bioturbation) may homogenize microbial communities across soil layers. Our meta-analysis provides a compelling evidence for negative effects of a common invasive below-ground ecosystem engineer on below-ground biodiversity of recipient ecosystems, which could potentially alter the ecosystem functions and services linked to soil biota. ; European Union's Horizon 2020, Grant/ Award Number: 677232; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; German Research Foundation, Grant/Award Number: FZT 118
Soil is one of the most biodiverse terrestrial habitats. Yet, we lack an integrative conceptual framework for understanding the patterns and mechanisms driving soil biodiversity. One of the underlying reasons for our poor understanding of soil biodiversity patterns relates to whether key biodiversity theories (historically developed for aboveground and aquatic organisms) are applicable to patterns of soil biodiversity. Here, we present a systematic literature review to investigate whether and how key biodiversity theories (species-energy relationship, theory of island biogeography, metacommunity theory, niche theory and neutral theory) can explain observed patterns of soil biodiversity. We then discuss two spatial compartments nested within soil at which biodiversity theories can be applied to acknowledge the scale-dependent nature of soil biodiversity. ; Published version ; M.P.T. acknowledges funding from the GermanResearch Foundation (DFG, TH 2307/1-1). H.R.P.P.was supported by the sDiv (DFG FZT 118). M.L.was supported by the TULIP Laboratory of Excellence(ANR-10-LABX-41). M.C.R. and W.H.V.d.P. acknowledgesupport from ERC Advanced Grants [grant number:ERC-ADV 694368 and ERC-ADV 323020 (SPECIALS),respectively]. F.T.D.V. is supported by a BBSRC DavidPhillips Fellowship (BB/L02456X/1). N.E. and O.F.acknowledge funding by the European Research Council(ERC Starting Grant 677232, ECOWORM). C.A.G. issupported by the European Union's Horizon 2020 researchand innovation programme under grant agreement No641762-ECOPOTENTIAL. E.K.C. acknowledges fundingfrom the Academy of Finland (285882) and the NaturalSciences and Engineering Research Council of Canada(postdoctoral fellowship 471903 and RGPIN-2019-05758).
Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change. ; H.R.P.P., B.K-R., and the sWorm workshops were supported by the sDiv [Synthesis Centre of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (DFG FZT 118)]. H.R.P.P., O.F. and N.E. acknowledge funding by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 677232 to NE). K.S.R. and W.H.v.d.P. were supported by ERC-ADV grant 323020 to W.H.v.d.P. Also supported by iDiv (DFG FZT118) Flexpool proposal 34600850 (C.A.G. and N.E.); the Academy of Finland (285882) and the Natural Sciences and Engineering Research Council of Canada (postdoctoral fellowship and RGPIN-2019-05758) (E.K.C.); German Federal Ministry of Education and Research (01LO0901A) (D.J.R.); ERC-AdG 694368 (M.R.); the TULIP Laboratory of Excellence (ANR-10-LABX-41) (M.L); and the BBSRC David Phillips Fellowship to F.T.d.V. (BB/L02456X/1). In addition, data collection was funded by the Russian Foundation for Basic Research (12-04-01538-а, 12-04-01734-a, 14-44-03666-r_center_a, 15-29-02724-ofi_m, 16-04-01878-a 19-05-00245, 19-04-00-609-a); Tarbiat Modares University; Aurora Organic Dairy; UGC(NERO) (F. 1-6/Acctt./NERO/2007-08/1485); Natural Sciences and Engineering Research Council (RGPIN-2017-05391); Slovak Research and Development Agency (APVV-0098-12); Science for Global Development through Wageningen University; Norman Borlaug LEAP Programme and International Atomic Energy Agency (IAEA); São Paulo Research Foundation - FAPESP (12/22510-8); Oklahoma Agricultural Experiment Station; INIA - Spanish Agency (SUM 2006-00012-00-0); Royal Canadian Geographical Society; Environmental Protection Agency (Ireland) (2005-S-LS-8); University of Hawai'i at Mānoa (HAW01127H; HAW01123M); European Union FP7 (FunDivEurope, 265171; ROUTES 265156); U.S. Department of the Navy, Commander Pacific Fleet (W9126G-13-2-0047); Science and Engineering Research Board (SB/SO/AS-030/2013) Department of Science and Technology, New Delhi, India; Strategic Environmental Research and Development Program (SERDP) of the U.S. Department of Defense (RC-1542); Maranhão State Research Foundation (FAPEMA 03135/13, 02471/17); Coordination for the Improvement of Higher Education Personnel (CAPES 3281/2013); Ministry of Education, Youth and Sports of the Czech Republic (LTT17033); Colorado Wheat Research Foundation; Zone Atelier Alpes, French National Research Agency (ANR-11-BSV7-020-01, ANR-09-STRA-02-01, ANR 06 BIODIV 009-01); Austrian Science Fund (P16027, T441); Landwirtschaftliche Rentenbank Frankfurt am Main; Welsh Government and the European Agricultural Fund for Rural Development (Project Ref. A AAB 62 03 qA731606); SÉPAQ, Ministry of Agriculture and Forestry of Finland; Science Foundation Ireland (EEB0061); University of Toronto (Faculty of Forestry); National Science and Engineering Research Council of Canada; Haliburton Forest & Wildlife Reserve; NKU College of Arts & Sciences Grant; Österreichische Forschungsförderungsgesellschaft (837393 and 837426); Mountain Agriculture Research Unit of the University of Innsbruck; Higher Education Commission of Pakistan; Kerala Forest Research Institute, Peechi, Kerala; UNEP/GEF/TSBF-CIAT Project on Conservation and Sustainable Management of Belowground Biodiversity; Ministry of Agriculture and Forestry of Finland; Complutense University of Madrid/European Union FP7 project BioBio (FPU UCM 613520); GRDC; AWI; LWRRDC; DRDC; CONICET (National Scientific and Technical Research Council) and FONCyT (National Agency of Scientific and Technological Promotion) (PICT, PAE, PIP), Universidad Nacional de Luján y FONCyT (PICT 2293 (2006)); Fonds de recherche sur la nature et les technologies du Québec (131894); Deutsche Forschungsgemeinschaft (SCHR1000/3-1, SCHR1000/6-1, 6-2 (FOR 1598), WO 670/7-1, WO 670/7-2, & SCHA 1719/1-2), CONACYT (FONDOS MIXTOS TABASCO/PROYECTO11316); NSF (DGE-0549245, DGE-0549245, DEB-BE-0909452, NSF1241932, LTER Program DEB-97–14835); Institute for Environmental Science and Policy at the University of Illinois at Chicago; Dean's Scholar Program at UIC; Garden Club of America Zone VI Fellowship in Urban Forestry from the Casey Tree Endowment Fund; J.E. Weaver Competitive Grant from the Nebraska Chapter of The Nature Conservancy; The College of Liberal Arts and Sciences at Depaul University; Elmore Hadley Award for Research in Ecology and Evolution from the UIC Dept. of Biological Sciences, Spanish CICYT (AMB96-1161; REN2000-0783/GLO; REN2003-05553/GLO; REN2003-03989/GLO; CGL2007-60661/BOS); Yokohama National University; MEXT KAKENHI (25220104); Japan Society for the Promotion of Science KAKENHI (25281053, 17KT0074, 25252026); ADEME (0775C0035); Ministry of Science, Innovation and Universities of Spain (CGL2017-86926-P); Syngenta Philippines; UPSTREAM; LTSER (Val Mazia/Matschertal); Marie Sklodowska Curie Postdoctoral Fellowship (747607); National Science & Technology Base Resource Survey Project of China (2018FY100306); McKnight Foundation (14–168); Program of Fundamental Researches of Presidium of Russian Academy of Sciences (AААА-A18–118021490070–5); Brazilian National Council for Scientific and Technological Development (CNPq 310690/2017–0, 404191/2019–3, 307486/2013–3); French Ministry of Foreign and European Affairs; Bavarian Ministry for Food, Agriculture and Forestry (Project No B62); INRA AIDY project; MIUR PRIN 2008; Idaho Agricultural Experiment Station; Estonian Science Foundation; Ontario Ministry of the Environment, Canada; Russian Science Foundation (16-17-10284); National Natural Science Foundation of China (41371270); Australian Research Council (FT120100463); USDA Forest Service-IITF. ; Peer reviewed