The weak intrinsic spin-orbit coupling in graphene can be greatly enhanced by proximity coupling. Here, we report on the proximity-induced spin-orbit coupling in graphene transferred by hexagonal boron nitride (hBN) onto the topological insulator Bi1.5 Sb0.5 Te1.7 Se1.3 (BSTS) which was grown on a hBN substrate by vapor solid synthesis. Phase coherent transport measurements, revealing weak localization, allow us to extract the carrier density-dependent phase coherence length lϕ. While lϕ increases with increasing carrier density in the hBN/graphene/hBN reference sample, it decreases in graphene/BSTS due to the proximity coupling of BSTS to graphene. The latter behavior results from D'yakonov-Perel'-type spin scattering in graphene with a large proximity-induced spin-orbit coupling strength of at least 2.5 meV. ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 785219 (Graphene Flagship), the Virtual Institute for Topological Insulators (Jülich-Aachen-Würzburg-Shanghai), and by the Deutsche Forschungsgemeinschaft (DFG) through SPP 1666 (BE 2441/8-2). ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2013-0295) and funded by the CERCA Programme/Generalitat de Catalunya. Growth of hexagonal boron nitride crystals was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI Grants No. JP26248061, No. JP15K21722, and No. JP25106006. ; Peer reviewed
2D materials support unique excitations of quasi-particles that consist of a material excitation and photons called polaritons. Especially interesting are in-plane propagating polaritons, which can be confined to a single monolayer and carry large momentum. In this work, we theoretically predict the existence of a new type of in-plane propagating polariton, supported on monolayer transition-metal-dicalcogonides (TMDs) in the visible spectrum. This 2D in-plane exciton-polariton (2DEP) is described by the coupling of an electromagnetic light field with the collective oscillations of the excitons supported by monolayer TMDs. We experimentally demonstrate the specific conditions required for the excitation of the 2DEP and show that these can be achieved if the TMD is encapsulated with hexagonal-boron-nitride (hBN) and cooled to cryogenic temperatures. In addition, we compare the properties of the 2DEP with those of the surface-plasmon-polariton at the same spectral range, and find that the 2DEP exhibit over two orders-of-magnitude larger wavelength confinement. Finally, we propose and numerically demonstrate two configurations for the possible experimental observation of 2DEPs. ; - I E thanks Dr Fabien Vialla. J H and D R acknowledge the funding support by the NSF MRSEC program through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634). H G and B F acknowledge support from ERC advanced grant COMPLEXPLAS. F H L K acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the "Severo Ochoa" Programme for Centres of Excellence in R&D (SEV-2015-0522), support by Fundacio Cellex Barcelona, Generalitat de Catalunya through the CERCA program, and the Mineco grants Plan Nacional (FIS2016-81044-P) and the Agency for Management of University and Research Grants (AGAUR) 2017 SGR 1656. Furthermore, the research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement no.785219 ...
Conducting materials typically exhibit either diffusive or ballistic charge transport. When electron–electron interactions dominate, a hydrodynamic regime with viscous charge flow emerges. More stringent conditions eventually yield a quantum-critical Dirac-fluid regime, where electronic heat can flow more efficiently than charge. However, observing and controlling the flow of electronic heat in the hydrodynamic regime at room temperature has so far remained elusive. Here we observe heat transport in graphene in the diffusive and hydrodynamic regimes, and report a controllable transition to the Dirac-fluid regime at room temperature, using carrier temperature and carrier density as control knobs. We introduce the technique of spatiotemporal thermoelectric microscopy with femtosecond temporal and nanometre spatial resolution, which allows for tracking electronic heat spreading. In the diffusive regime, we find a thermal diffusivity of roughly 2,000 cm s, consistent with charge transport. Moreover, within the hydrodynamic time window before momentum relaxation, we observe heat spreading corresponding to a giant diffusivity up to 70,000 cm s, indicative of a Dirac fluid. Our results offer the possibility of further exploration of these interesting physical phenomena and their potential applications in nanoscale thermal management. ; We thank M. Polini and P. Piskunow for fruitful discussions, and H. Agarwal and K. Soundarapandian for help with sample fabrication. We acknowledge the following funding sources: European Union's Horizon 2020 research and innovation programme under grant nos. 804349 (K.-J.T.), 873028 (A.P.), 785219 (F.H.L.K. and S.R.), 881603 (F.H.L.K. and S.R.) and 670949 (N.F.v.H.); Spanish MCIU/AEI under grant nos. RYC-2017-22330 (K.-J.T.), PID2019-111673GB-I00 (K.-J.T.), BES-2016-078727 (M.L.), RTI2018-099957-J-I00 (M.L.) and PGC2018-096875-B-I00 (M.L. and N.F.v.H.); the Government of Catalonia under grant nos. SGR1656 (F.H.L.K.) and 2017SGR1369 (N.F.v.H.) and the CERCA program (ICN2 and ICFO); Spanish MINECO under grant nos. SEV-2017-0706 (ICN2) and CEX-2019-000910-S (ICFO); the International PhD fellowship program 'la Caixa' (A.B.); Leverhulme Trust grant no. RPG-2019-363 (A.P.); the Elemental Strategy Initiative conducted by the MEXT, Japan, grant no. JPMXP0112101001 (K.W. and T.T.), JSPS KAKENHI grant no. JP20H00354 (K.W. and T.T.) and the CREST (grant no. JPMJCR15F3) and JST (K.W. and T.T.); Fundació Privada Cellex (ICFO) and Fundació Mir-Puig (ICFO).
Although the detection of light at terahertz (THz) frequencies is important for a large range of applications, current detectors typically have several disadvantages in terms of sensitivity, speed, operating temperature, and spectral range. Here, we use graphene as a photoactive material to overcome all of these limitations in one device. We introduce a novel detector for terahertz radiation that exploits the photothermoelectric (PTE) effect, based on a design that employs a dual-gated, dipolar antenna with a gap of ∼100 nm. This narrow-gap antenna simultaneously creates a pn junction in a graphene channel located above the antenna and strongly concentrates the incoming radiation at this pn junction, where the photoresponse is created. We demonstrate that this novel detector has an excellent sensitivity, with a noise-equivalent power of 80 pW/ at room temperature, a response time below 30 ns (setup-limited), a high dynamic range (linear power dependence over more than 3 orders of magnitude) and broadband operation (measured range 1.8–4.2 THz, antenna-limited), which fulfills a combination that is currently missing in the state-of-the-art detectors. Importantly, on the basis of the agreement we obtained between experiment, analytical model, and numerical simulations, we have reached a solid understanding of how the PTE effect gives rise to a THz-induced photoresponse, which is very valuable for further detector optimization. ; F.H.L.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the "Severo Ochoa" Program for Centres of Excellence in R&D (SEV-2015-0522), support by Fundacio Cellex Barcelona, Generalitat de Catalunya through the CERCA program, and the Agency for Management of University and Research Grants (AGAUR) 2017 SGR 1656. Furthermore, the research leading to these results has received funding from the European Union Seventh Framework Program under grant agreement no.785219 Graphene Flagship (Core2). ICN2 is supported by the Severo Ochoa program from Spanish MINECO (grant no. SEV-2017-0706). K.-J.T. acknowledges support from a Mineco Young Investigator Grant (FIS2014-59639-JIN). S.C. acknowledges funding from the Barcelona Institute of Science and Technology (BIST), the Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement de la Generalitat de Catalunya and the European Social Fund, FEDER. M.S.V. acknowledges financial support from the ERC Project 681379 (SPRINT) and partial support from the second half of the Balzan Prize 2016 in applied photonics delivered to Federico Capasso. A.Y.N. acknowledges funding from the Spanish Ministry of Economy, Industry and Competitiveness, national project MAT2017-88358-C3-3-R. R.H. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness through the project MDM-2016-0618 of the Maria de Maeztu Units of Excellence Programme. ; Peer reviewed
Excitons in monolayer transition-metal-dichalcogenides (TMDs) dominate their optical response and exhibit strong light-matter interactions with lifetime-limited emission. While various approaches have been applied to enhance light-exciton interactions in TMDs, the achieved strength have been far below unity, and a complete picture of its underlying physical mechanisms and fundamental limits has not been provided. Here, we introduce a TMD-based van der Waals heterostructure cavity that provides near-unity excitonic absorption, and emission of excitonic complexes that are observed at ultralow excitation powers. Our results are in full agreement with a quantum theoretical framework introduced to describe the light-exciton-cavity interaction. We find that the subtle interplay between the radiative, nonradiative and dephasing decay rates plays a crucial role, and unveil a universal absorption law for excitons in 2D systems. This enhanced light-exciton interaction provides a platform for studying excitonic phase-transitions and quantum nonlinearities and enables new possibilities for 2D semiconductor-based optoelectronic devices. ; The authors thank Mr. David Alcaraz Iranzo, Dr. Fabien Vialla, and Dr. Antoine Reserbat-Plantey for fruitful discussions. F.H.L.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness through the "Severo Ochoa" Programme for Centres of Excellence in R and D (SEV-2015-0522), support by Fundacio Cellex Barcelona, Generalitat de Catalunya through the CERCA program, and the Mineco grants Ramon y Cajal (RYC-201212281, Plan Nacional (FIS2013-47161-P and FIS2014-59639JIN), and the Agency for Management of University and Research Grants (AGAUR) 2017 SGR 1656. Furthermore, the research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement numbers 785219 and 881603 Graphene Flagship. This work was supported by the ERC TOPONANOP under grant agreement number 726001 and the MINECO Plan Nacional Grant ...
Integrating and manipulating the nano-optoelectronic properties of Van der Waals heterostructures can enable unprecedented platforms for photodetection and sensing. The main challenge of infrared photodetectors is to funnel the light into a small nanoscale active area and efficiently convert it into an electrical signal. Here, we overcome all of those challenges in one device, by efficient coupling of a plasmonic antenna to hyperbolic phonon-polaritons in hexagonal-BN to highly concentrate mid-infrared light into a graphene pn-junction. We balance the interplay of the absorption, electrical and thermal conductivity of graphene via the device geometry. This approach yields remarkable device performance featuring room temperature high sensitivity (NEP of 82 pW/Hz−−−√) and fast rise time of 17 nanoseconds (setup-limited), among others, hence achieving a combination currently not present in the state-of-the-art graphene and commercial mid-infrared detectors. We also develop a multiphysics model that shows very good quantitative agreement with our experimental results and reveals the different contributions to our photoresponse, thus paving the way for further improvement of these types of photodetectors even beyond mid-infrared range. ; F.H.L.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the "Severo Ochoa" Programme for Centres of Excellence in R& D (SEV-2015-0522), support by Fundacio Cellex Barcelona, Generalitat de Catalunya through the CERCA program, and the Agency for Management of University and Research Grants (AGAUR) 2017 SGR 1656. Furthermore, the research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement no. 785219 and no. 881603 Graphene Flagship for Core2 and Core3. ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706). K.J.T. acknowledges funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 804349. R.H. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (national project RTI2018-094830-B-100 and the project MDM-2016-0618 of the Marie de Maeztu Units of Excellence Program) and the Basque Government (grant No. IT1164-19). S.C. acknowledges financial support from the Barcelona Institute of Science and Technology (BIST), the Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya and the European Social Fund (L'FSE inverteix en el teu futur)—FEDER. D.E. acknowledges partial support from the Army Research Office MURI "Ab-Initio Solid-State Quantum Materials" Grant No. W911NF18-1-0431. J.G. was supported by the ARL-MIT Institute for Soldier Nanotechnologies (ISN). T.S. and L.M.M. acknowledge support by Spain's MINECO under Grant No. MAT2017-88358-C3-1-R and the Aragon Government through project Q-MAD. ; Peer reviewed
Nanoscale charge control is a key enabling technology in plasmonics, electronic band structure engineering, and the topology of two-dimensional materials. By exploiting the large electron affinity of α-RuCl3, we are able to visualize and quantify massive charge transfer at graphene/α-RuCl3 interfaces through generation of charge-transfer plasmon polaritons (CPPs). We performed nanoimaging experiments on graphene/α-RuCl3 at both ambient and cryogenic temperatures and discovered robust plasmonic features in otherwise ungated and undoped structures. The CPP wavelength evaluated through several distinct imaging modalities offers a high-fidelity measure of the Fermi energy of the graphene layer: EF = 0.6 eV (n = 2.7 × 1013 cm–2). Our first-principles calculations link the plasmonic response to the work function difference between graphene and α-RuCl3 giving rise to CPPs. Our results provide a novel general strategy for generating nanometer-scale plasmonic interfaces without resorting to external contacts or chemical doping. ; Research at Columbia was supported as part of the Energy Frontier Research Center on Programmable Quantum Materials funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award No. DE-SC0019443. J.Z., L.X., and A.R. were supported by the European Research Council (ERC-2015-AdG694097), the Cluster of Excellence "Advanced Imaging of Matter" (AIM) EXC 2056 - 390715994, funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under RTG 2247, Grupos Consolidados (IT1249-19) and SFB925 "Light induced dynamics and control of correlated quantum systems". J.Z. acknowledges funding received from the European Union Horizon 2020 research and innovation program under Marie Sklodowska-Curie Grant Agreement 886291 (PeSD-NeSL). J.Z., L.X., and A.R. would like to acknowledge Nicolas Tancogne-Dejean for fruitful discussions and also acknowledge support by the Max Planck Institute-New York City Center for Non-Equilibrium Quantum Phenomena. The Flatiron Institute is a division of the Simons Foundation. D.G.M. acknowledges support from the Gordon and Betty Moore Foundation's EPiQS Initiative, Grant GBMF9069. Work at ORNL was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, Grant JPMXP0112101001, JSPS KAKENHI Grant JP20H00354, and the CREST (JPMJCR15F3), JST. S.E.N. was supported by the Division of Scientific User Facilities of the U.S. DOE Basic Energy Sciences. M.M.F. acknowledges support from the Office of Naval Research Grant N00014-18-1-2722. D.N.B. is the Vannevar Bush Faculty ONR-VB: N00014-19-1-2630 and Moore investigator in Quantum Materials EPIQS program #9455. A.S.M acknowledges support from award 80NSSC19K1210 under the NASA Laboratory Analysis of Returned Samples program. ; Peer reviewed