Temperature dependence of Cs release during oxidation of Cs-loaded graphite
In: Progress in nuclear energy: the international review journal covering all aspects of nuclear energy, Band 164, S. 104847
ISSN: 0149-1970
5 Ergebnisse
Sortierung:
In: Progress in nuclear energy: the international review journal covering all aspects of nuclear energy, Band 164, S. 104847
ISSN: 0149-1970
In: Science and technology of nuclear installations, Band 2018, S. 1-10
ISSN: 1687-6083
At the beginning, a comparative analysis was made on the oxidation corrosion rate and ash content of A3-3 matrix graphite (MG) pebbles lathed before and after high temperature purification (HTP) treatment. Their oxidation corrosion rate and ash contents were almost identical, which indicated that the HTP process was to purify the entire MG pebbles and not limited on the surfaces. Furthermore, the multiple mechanical and thermal properties of MG treated without and with the treatment of HTP at ~1900°C were compared and their microstructure features were characterized as well. As the crush strength, oxidation corrosion rate, and erosion rate of MG without HTP treatment did not satisfy the specifications, the comprehensive properties and purity of MG with HTP were improved in various degrees through the HTP process so that all performances met the requirements of the A3-3 MG. The improvement of crush strength and erosion rate of MG in the HTP process could be mainly attributed to the upgradation of ordered microstructure and corresponding increase of density. However, the enhancement of oxidation corrosion rate was due to the synergistic effects of microstructural optimization and reduction of impurity elements, especially the transition metal elements of MG in the HTP process.
In: Progress in nuclear energy: the international review journal covering all aspects of nuclear energy, Band 156, S. 104535
ISSN: 0149-1970
In: Science and technology of nuclear installations, Band 2017, S. 1-6
ISSN: 1687-6083
Matrix graphite (MG) with incompletely graphitized binder used in high-temperature gas-cooled reactors (HTGRs) is commonly suspected to exhibit lower oxidation resistance in air. In order to reveal the oxidation performance, the oxidation behavior of newly developed A3-3 MG at the temperature range from 500 to 950°C in air was studied and the effect of oxidation on the compressive strength of oxidized MG specimens was characterized. Results show that temperature has a significant influence on the oxidation behavior of MG. The transition temperature between Regimes I and II is ~700°C and the activation energy (Ea) in Regime I is around 185 kJ/mol, a little lower than that of nuclear graphite, which indicates MG is more vulnerable to oxidation. Oxidation at 550°C causes more damage to compressive strength of MG than oxidation at 900°C. Comparing with the strength of pristine MG specimens, the rate of compressive strength loss is 77.3% after oxidation at 550°C and only 12.5% for oxidation at 900°C. Microstructure images of SEM and porosity measurement by Mercury Porosimetry indicate that the significant compressive strength loss of MG oxidized at 550°C may be attributed to both the uniform pore formation throughout the bulk and the preferential oxidation of the binder.
In: Materials and design, Band 223, S. 111120
ISSN: 1873-4197