Abstract The Central and Eastern Europe region is faced with longstanding environmental health problems as well as emerging health threats from pollution caused by the region's recent period of rapid industrialization. As researchers in the region continue to work to address these problems, they could find unique approaches by increasing collaborations between biomedical and non-biomedical scientists and by more closely following the Superfund Research Program model of pursuing basic research, then connecting with stakeholders in the region to share and apply new knowledge. To build upon and leverage research in the region, researchers and stakeholders should work to formalize the bi-annual meeting of the Central and Eastern European Conference on Health and the Environment into a more cohesive organization and make efforts to connect to broader global networks that aim to spread research results and applications around the world. By taking these steps to connect to the broader world of environmental health research, the CEE region stakeholders can reduce pollution-related disease, minimize costs of hazardous waste remediation, and help grow the economy in their region.
AbstractWhile each region of the world faces unique challenges, environmental threats to vulnerable populations throughout Central and Eastern Europe (CEE) present a significant public health challenge. Environmental pollution is widespread, resulting from the consequences of rapid industrialization during the Soviet Union era. To help address these concerns, a meeting, sponsored in part by the National Institutes of Health (NIH)/National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program (SRP), was convened in 1994. The meeting, "Hazardous Wastes – Exposure, Remediation, and Policy," brought together representatives of the governments of seven countries in the region, scientists from the United States and Western Europe, and representatives from international organizations to explore hazardous waste problems in the region. Since 1994, the SRP and partners have been holding meetings throughout CEE to share important information regarding environmental health. The general sessions have shifted from a focus on describing the problems in each country related to hazardous waste, exposure assessment, risk reduction, and risk communication, to an exchange of information to better define links between health and the environment and strategies to improve regional problems. The 1994 meeting and subsequent meetings raised issues such as heavy metal contamination, exposures from hazardous waste, and pollution caused by deficiencies in disposal of waste overall. Research priorities that were identified included development of reliable biomarkers, better understanding of the relationship between nutrition and chemical toxicity, more epidemiological studies in CEE, better methods of environmental data analysis, and development of remediation tools. Here, we review examples of research from current SRP grantees that address many of these issues. In 2004, the first official Central and Eastern European Conference on Health and the Environment (CEECHE) was held, and has been held biannually at venues across CEE. The CEECHE provides a forum for researchers and engineers, and organizations with diverse professional expertise and backgrounds, to jointly examine pressing environment and health issues, engage in cooperative research, and develop and disseminate innovative prevention strategies for addressing these issues. The CEECHE facilitates more intentional integration of disciplines to achieve a fundamental understanding of biological, environmental, and engineering processes and exploit this knowledge to contribute to solving environmental exposure-related issues. Critical to the CEECHE mission is the participation of trainees and junior scientists who will share their data and engage broadly with the scientific community. Scientific inquiry that supports a paradigm whereby knowledge gained through understanding disease processes resulting from environmental exposures would further our understanding of potential human health effects, and provide a creative, holistic approach to integrate seemingly discrete biological systems and geological, ecological and human health risk assessments into more comprehensive models. Such models will be discussed which advance the mission of reducing the public health burden of hazardous substances through interdisciplinary research and training.
Abstract The Pacific Basin Consortium (PBC) was formed 25 years ago to address significant public health challenges to vulnerable populations imposed by environmental threats in the region, including areas surrounding the rim of and in the Pacific Ocean. Originally focused on toxic waste pollution, the PBC has broadened its efforts over the years, embracing a health focus and more of a balance between engineering and public health. This move was informed by the PBC's close relationship with the National Institutes of Health (NIH) National Institute of Environmental Health Sciences (NIEHS) Superfund Hazardous Substances Basic Research and Training Program (Superfund Research Program, or SRP), which played a dynamic role in the PBC from its early days. In addition, a sub-focus on children's environmental health emerged, which helped set the agenda for children's environmental health research in the region. Progress has also been made in reducing harm from some threats, particularly via extensive interventions to remediate arsenic in drinking water in Bangladesh, western Thailand, and Vietnam. However, many of the environmental health problems in the Pacific Basin region persist, including air pollution, inadequate safe drinking water, undernutrition, and a growing electronic waste problem. In the Pacific Basin and elsewhere, people with the lowest incomes often live in areas with the worst pollution. Although it is difficult to implement, dynamic strategic networking efforts are vital to understanding and correcting the inequities that persist in global environmental health. The PBC can help accomplish this by continuing and expanding its work to foster and enhance collaborations and communications between environmental health and engineering investigators and to integrate investigator-initiated research. As the PBC looks forward, there is also a need to exert increased effort to establish and maintain partnerships, to develop community-based primary-care and health services for vulnerable populations, as well as to connect with researchers in the eastern side of the Pacific basin and those in smaller island states.
Abstract Environmental exposures are changing dramatically in location, intensity, and frequency. Many developing countries are undergoing a transition in which they face the double burden of infectious diseases as well as chronic diseases. Noncommunicable diseases have emerged as the leading cause of death and disability in developing countries. Globally, pollution is insufficiently appreciated and inadequately quantified as a cause of disease. The health burden from both noninfectious diseases and infectious disease, especially parasites, is high among exposed people. Mothers and children are particularly vulnerable to pollution-related diseases in developing countries. Exposures to pollution can cause protracted noncommunicable diseases across their life span. A global initiative to promote human health sciences and technologies would enhance collaborations and communications amongst investigators and public environmental health officials. Existing models that facilitate the transfer of information and research results exist and can provide insight into building such an international network, allowing better prediction of disease risk and provide ways to reduce exposure to environmental contaminants. A global network would bring together scientists from multiple disciplines and countries to work toward a better understanding of the double burden of disease, especially in low and middle income countries, and promote ways to improve public health.
Abstract Innovative devices and tools for exposure assessment and remediation play an integral role in preventing exposure to hazardous substances. New solutions for detecting and remediating organic, inorganic, and mixtures of contaminants can improve public health as a means of primary prevention. Using a public health prevention model, detection and remediation technologies contribute to primary prevention as tools to identify areas of high risk (e.g. contamination hotspots), to recognize hazards (bioassay tests), and to prevent exposure through contaminant cleanups. Primary prevention success is ultimately governed by the widespread acceptance of the prevention tool. And, in like fashion, detection and remediation technologies must convey technical and sustainability advantages to be adopted for use. Hence, sustainability – economic, environmental, and societal – drives innovation in detection and remediation technology. The National Institute of Health (NIH) National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program (SRP) is mandated to advance innovative detection, remediation, and toxicity screening technology development through grants to universities and small businesses. SRP recognizes the importance of fast, accurate, robust, and advanced detection technologies that allow for portable real-time, on-site characterization, monitoring, and assessment of contaminant concentration and/or toxicity. Advances in non-targeted screening, biological-based assays, passive sampling devices (PSDs), sophisticated modeling approaches, and precision-based analytical tools are making it easier to quickly identify hazardous "hotspots" and, therefore, prevent exposures. Innovation in sustainable remediation uses a variety of approaches: in situ remediation; harnessing the natural catalytic properties of biological processes (such as bioremediation and phytotechnologies); and application of novel materials science (such as nanotechnology, advanced membranes, new carbon materials, and materials reuse). Collectively, the investment in new technologies shows promise to reduce the amount and toxicity of hazardous substances in the environment. This manuscript highlights SRP funded innovative devices and tools for exposure assessment and remediation of organic, inorganic, and mixtures of contaminants with a particular focus on sustainable technologies.
Abstract In many low- and middle-income countries, handling and disposal of discarded electrical or electronic equipment (EEE) is frequently unregulated. e-Waste contains hazardous constituents such as lead, mercury, and chromium, certain chemicals in plastics, and flame retardants. There is increasing concern about health effects related to contamination in air, soil, and water for people working and living at or near informal e-waste processing sites, especially to the most vulnerable populations, pregnant women and children. The observed adverse health effects and increasing number of e-waste sites make protecting human health and the environment from e-waste contamination an expanding challenge. Through international cooperation, awareness can be elevated about the harm that e-waste processing poses to human health. Here we discuss how international researchers, public health practitioners, and policymakers can employ solutions to reduce e-waste exposures.
Abstract The National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program (SRP) funds university-based, multidisciplinary research on human health and environmental science and engineering with the central goals to understand how hazardous substances contribute to disease and how to prevent exposures to these environmental chemicals. This multi-disciplinary approach allows early career scientists (e.g. graduate students and postdoctoral researchers) to gain experience in problem-based, solution-oriented research and to conduct research in a highly collaborative environment. Training the next generation of environmental health scientists has been an important part of the SRP since its inception. In addition to basic research, the SRP has grown to include support of broader training experiences such as those in research translation and community engagement activities that provide opportunities to give new scientists many of the skills they will need to be successful in their field of research. Looking to the future, the SRP will continue to evolve its training component by tracking and analyzing outcomes from its trainees by using tools such as the NIEHS CareerTrac database system, by increasing opportunities for trainees interested in research that goes beyond US boundaries, and in the areas of bioinformatics and data integration. These opportunities will give them the skills needed to be competitive and successful no matter which employment sector they choose to enter after they have completed their training experience.
Arctic indigenous peoples face significant challenges resulting from the contamination of Arctic air, water, and soil by persistent organic pollutants, heavy metals, and radionuclides. International cooperative efforts among governments and research institutions are under way to collect the information needed by environmental health scientists and public health officials to address environmental contamination in the Arctic. However, the climatic, political, and cultural conditions of the land and its native populations combine to present a unique set of scientific and logistic challenges to addressing this important public health issue. Public health officials have the responsibility to respect the cultural traditions of indigenous communities, while simultaneously designing strategies that will reduce their exposure to environmental contaminants and rates of disease and dysfunction. Researchers can better understand the link between environmental exposures and disease through monitoring programs for both the subsistence diets and health status of the indigenous populations. We suggest that the incorporation of community-based participatory research methods into programs designed to assess biomarkers of contaminant exposure in children and adults may be a valuable addition to ongoing and newly developed research programs. This approach could serve as a model for international environmental health initiatives, because it involves the participation of the local communities and seeks to builds trust between all stakeholders.
Abstract The National Institute of Environmental Health Sciences Superfund Research Program (SRP) funds diverse transdisciplinary research to understand how hazardous substances contribute to disease. SRP research focuses on how to prevent these exposures by promoting problem-based, solution-oriented research. SRP's mandate areas encompasses broad biomedical and environmental science and engineering research efforts and, when combined with research translation, community engagement, training, and data science, offers broad expertise and unique perspectives directed at a specific big picture question. The purpose of this commentary is to adapt a systems approach concept to SRP research to accommodate the complexity of a scientific problem. The SRP believes a systems approach offers a framework to understand how scientists can work together to integrate diverse fields of research to prevent or understand environmentally-influenced human disease by addressing specific questions that are part of a larger perspective. Specifically, within the context of the SRP, a systems approach can elucidate the complex interactions between factors that contribute to or protect against environmental insults. Leveraging a systems approach can continue to advance SRP science while building the foundation for researchers to address difficult emerging environmental health problems.
AbstractHuman exposure to environmental contaminants such as persistent chlorinated organics, heavy metals, pesticides, phthalates, flame retardants, electronic waste and airborne pollutants around the world, and especially in Southeast Asian regions, are significant and require urgent attention. Given this widespread contamination and abundance of such toxins as persistent organic pollutants (POPs) in the ecosystem, it is unlikely that remediation alone will be sufficient to address the health impacts associated with this exposure. Furthermore, we must assume that the impact on health of some of these contaminants results in populations with extraordinary vulnerabilities to disease risks. Further exacerbating risk; infectious diseases, poverty and malnutrition are common in the Southeast Asian regions of the world. Thus, exploring preventive measures of environmental exposure and disease risk through new paradigms of environmental toxicology, optimal and/or healthful nutrition and health is essential. For example, folic acid supplementation can lower blood arsenic levels, and plant-derived bioactive nutrients can lower cardiovascular and cancer risks linked to pollutant exposure. Data also indicate that diets enriched with bioactive food components such as polyphenols and omega-3 polyunsaturated fatty acids can prevent or decrease toxicant-induced inflammation. Thus, consuming healthy diets that exhibit high levels of antioxidant and anti-inflammatory properties, is a meaningful way to reduce the vulnerability to non-communicable diseases linked to environmental toxic insults. This nutritional paradigm in environmental toxicology requires further study in order to improve our understanding of the relationship between nutrition or other lifestyle modifications and toxicant-induced diseases. Understanding mechanistic relationships between nutritional modulation of environmental toxicants and susceptibility to disease development are important for both cumulative risk assessment and the design and implementation of future public health programs and behavioral interventions.