Image analysis as a tool to quantify rigor contraction in pre-rigor-filleted fillets
In: Computers and Electronics in Agriculture, Band 50, Heft 2, S. 109-120
5 Ergebnisse
Sortierung:
In: Computers and Electronics in Agriculture, Band 50, Heft 2, S. 109-120
Models for mapping and forecasting infective pressure from salmon louse Lepeophtheirus salmonis larvae are of major importance in the Norwegian government's management of salmonid aquaculture. These models use site-reported temperature and number of egg-producing female adult lice present within cages to calculate how many lice eggs and larvae are released from individual farms. The reported temperature is critical in this calculation, as temperature influences both frequency of 'spawnings' and egg developmental time until hatching. Farms report temperature measured at 3 m depth, as defined by regulation. However, the salmon themselves, and therefore also the attached female lice and their eggs, often swim deeper to meet their preferred temperature within the water column. This study compares calculated lice egg production based on reported temperature at 3 m depth to calculated lice egg production based on a hydrodynamic ocean model of temperature stratification and salmon-preferred temperature in the modelled stratifications. The results clearly show that present legislated routines with farm site temperature measurements at 3 m depth lead to underestimation of egg and larvae production in winter and overestimation in summer for a range of sites. Future mitigating management and models of lice output should use the temperature measured or modelled for the depths the salmon predominantly occupy.
BASE
The welfare of farmed fish is often regarded with less concern than the welfare of other husbandry animals, as fish are not universally classified as sentient beings. In Norway, farmed fish and other husbandry animals are legally protected under the same laws. Additionally, the legislature has defined a number of aquaculture-specific amendments, including mandatory welfare courses for fish farmers who have a key role in securing animal welfare, also with regards to noting welfare challenges in the production process. This article uses fish welfare courses as a site from which to inquire about the common-sense understanding of fish welfare in Norwegian fish farming. The focus is specifically on fish farm employees, their experiences of welfare-related issues and contradictions in their daily work, and the struggle to act responsibly in aquaculture settings. Through participant observation at welfare courses, as well as interviews and conversations with fish farm workers, the article details how challenges are experienced 'on the ground', and suggests how fish farm workers' own experiential knowledge might be mobilized to improve the general welfare of farmed fish.
BASE
In: Marine policy, Band 117, S. 103969
ISSN: 0308-597X
In: Marine policy, Band 129, S. 104530
ISSN: 0308-597X