Macroeconomic forecasting using penalized regression methods
In: International journal of forecasting, Band 34, Heft 3, S. 408-430
ISSN: 0169-2070
8 Ergebnisse
Sortierung:
In: International journal of forecasting, Band 34, Heft 3, S. 408-430
ISSN: 0169-2070
In: Oxford Bulletin of Economics and Statistics, Band 76, Heft 1, S. 139-151
SSRN
In: Statistical papers, Band 60, Heft 6, S. 2109-2118
ISSN: 1613-9798
In: Bundesbank Discussion Paper No. 45/2015
SSRN
Fichier WP en ligne ; We propose a bootstrap-based test of the null hypothesis of equality of two firms' conditional Risk Measures (RMs) at a single point in time. The test can be applied to a wide class of conditional risk measures issued from parametric or semi-parametric models. Our iterative testing procedure produces a grouped ranking of the RMs which has direct application for systemic risk analysis. A Monte Carlo simulation demonstrates that our test has good size and power properties. We propose an application to a sample of U.S. financial institutions using CoVaR, MES, and SRISK, and conclude that only SRISK can be estimated with enough precision to allow for meaningful ranking.
BASE
In: Discussion paper 2015,45
Statistics Netherlands uses a state space model to estimate the Dutch unemployment by using monthly series about the labour force surveys (LFS). More accurate estimates of this variable can be obtained by including auxiliary information in the model, such as the univariate administrative series of claimant counts. Legislative changes and economic crises may affect the relation between survey-based and auxiliary series. This time-changing relationship is captured by a time-varying correlation parameter in the covariance matrix of the transition equation's error terms. We treat the latter parameter as a state variable, which makes the state space model become nonlinear and therefore its estimation by Kalman filtering and maximum likelihood infeasible. We therefore propose an indirect inference approach to estimate the static parameters of the model, which employs cubic splines for the auxiliary model, and a bootstrap filter method to estimate the time-varying correlation together with the other state variables of the model. We conduct a Monte Carlo simulation study that shows that our proposed methodology is able to correctly estimate both the time-constant parameters and the state vector of the model. Empirically we find that the financial crisis of 2008 triggered a deeper and more prolonged deviation between the survey-based and the claimant counts series, than a legislative change in 2015. Promptly tackling such changes, which our proposed method does, results in more realistic real-time unemployment estimates.
BASE
In: Schiavoni , C , Koopman , S J , Palm , F C , Smeekes , S & van den Brakel , J 2021 ' Time-varying state correlations in state space models and their estimation via indirect inference ' Tinbergen Institute . https://doi.org/10.2139/ssrn.3792448
Statistics Netherlands uses a state space model to estimate the Dutch unemployment by using monthly series about the labour force surveys (LFS). More accurate estimates of this variable can be obtained by including auxiliary information in the model, such as the univariate administrative series of claimant counts. Legislative changes and economic crises may affect the relation between survey-based and auxiliary series. This time-changing relationship is captured by a time-varying correlation parameter in the covariance matrix of the transition equation's error terms. We treat the latter parameter as a state variable, which makes the state space model become nonlinear and therefore its estimation by Kalman filtering and maximum likelihood infeasible. We therefore propose an indirect inference approach to estimate the static parameters of the model, which employs cubic splines for the auxiliary model, and a bootstrap filter method to estimate the time-varying correlation together with the other state variables of the model. We conduct a Monte Carlo simulation study that shows that our proposed methodology is able to correctly estimate both the time-constant parameters and the state vector of the model. Empirically we find that the financial crisis of 2008 triggered a deeper and more prolonged deviation between the survey-based and the claimant counts series, than a legislative change in 2015. Promptly tackling such changes, which our proposed method does, results in more realistic real-time unemployment estimates.
BASE