In: Twin research and human genetics: the official journal of the International Society for Twin Studies (ISTS) and the Human Genetics Society of Australasia, Band 18, Heft 6, S. 738-745
Structural brain magnetic resonance imaging (MRI) traits share part of their genetic variance with cognitive traits. Here, we use genetic association results from large meta-analytic studies of genome-wide association (GWA) for brain infarcts (BI), white matter hyperintensities, intracranial, hippocampal, and total brain volumes to estimate polygenic scores for these traits in three Scottish samples: Generation Scotland: Scottish Family Health Study (GS:SFHS), and the Lothian Birth Cohorts of 1936 (LBC1936) and 1921 (LBC1921). These five brain MRI trait polygenic scores were then used to: (1) predict corresponding MRI traits in the LBC1936 (numbers ranged 573 to 630 across traits), and (2) predict cognitive traits in all three cohorts (in 8,115–8,250 persons). In the LBC1936, all MRI phenotypic traits were correlated with at least one cognitive measure, and polygenic prediction of MRI traits was observed for intracranial volume. Meta-analysis of the correlations between MRI polygenic scores and cognitive traits revealed a significant negative correlation (maximal r = 0.08) between the HV polygenic score and measures of global cognitive ability collected in childhood and in old age in the Lothian Birth Cohorts. The lack of association to a related general cognitive measure when including the GS:SFHS points to either type 1 error or the importance of using prediction samples that closely match the demographics of the GWA samples from which prediction is based. Ideally, these analyses should be repeated in larger samples with data on both MRI and cognition, and using MRI GWA results from even larger meta-analysis studies.
OBJECTIVE To examine whether physical inactivity is a risk factor for dementia, with attention to the role of cardiometabolic disease in this association and reverse causation bias that arises from changes in physical activity in the preclinical (prodromal) phase of dementia. DESIGN Meta-analysis of 19 prospective observational cohort studies. DATA SOURCES The Individual-Participant-Data Meta-analysis in Working Populations Consortium, the Inter-University Consortium for Political and Social Research, and the UK Data Service, including a total of 19 of a potential 9741 studies. REVIEW METHOD The search strategy was designed to retrieve individual-participant data from prospective cohort studies. Exposure was physical inactivity; primary outcomes were incident all-cause dementia and Alzheimer's disease; and the secondary outcome was incident cardiometabolic disease (that is, diabetes, coronary heart disease, and stroke). Summary estimates were obtained using random effects meta-analysis. RESULTS Study population included 404 840 people (mean age 45.5 years, 57.7% women) who were initially free of dementia, had a measurement of physical inactivity at study entry, and were linked to electronic health records. In 6.0 million person-years at risk, we recorded 2044 incident cases of all-cause dementia. In studies with data on dementia subtype, the number of incident cases of Alzheimer's disease was 1602 in 5.2 million person-years. When measured = 10 years before dementia onset, no difference in dementia risk between physically active and inactive participants was observed (hazard ratios 1.01 (0.89 to 1.14) and 0.96 (0.85 to 1.08) for the two outcomes). Physical inactivity was consistently associated with increased risk of incident diabetes (hazard ratio 1.42, 1.25 to 1.61), coronary heart disease (1.24, 1.13 to 1.36), and stroke (1.16, 1.05 to 1.27). Among people in whom cardiometabolic disease preceded dementia, physical inactivity was non-significantly associated with dementia (hazard ratio for physical activity assessed > 10 before dementia onset 1.30, 0.79 to 2.14). CONCLUSIONS In analyses that addressed bias due to reverse causation, physical inactivity was not associated with all-cause dementia or Alzheimer's disease, although an indication of excess dementia risk was observed in a subgroup of physically inactive individuals who developed cardiometabolic disease.
OBJECTIVE To examine whether physical inactivity is a risk factor for dementia, with attention to the role of cardiometabolic disease in this association and reverse causation bias that arises from changes in physical activity in the preclinical (prodromal) phase of dementia. DESIGN Meta-analysis of 19 prospective observational cohort studies. DATA SOURCES The Individual-Participant-Data Meta-analysis in Working Populations Consortium, the Inter-University Consortium for Political and Social Research, and the UK Data Service, including a total of 19 of a potential 9741 studies. REVIEW METHOD The search strategy was designed to retrieve individual-participant data from prospective cohort studies. Exposure was physical inactivity; primary outcomes were incident all-cause dementia and Alzheimer's disease; and the secondary outcome was incident cardiometabolic disease (that is, diabetes, coronary heart disease, and stroke). Summary estimates were obtained using random effects meta-analysis. RESULTS Study population included 404 840 people (mean age 45.5 years, 57.7% women) who were initially free of dementia, had a measurement of physical inactivity at study entry, and were linked to electronic health records. In 6.0 million person-years at risk, we recorded 2044 incident cases of all-cause dementia. In studies with data on dementia subtype, the number of incident cases of Alzheimer's disease was 1602 in 5.2 million person-years. When measured = 10 years before dementia onset, no difference in dementia risk between physically active and inactive participants was observed (hazard ratios 1.01 (0.89 to 1.14) and 0.96 (0.85 to 1.08) for the two outcomes). Physical inactivity was consistently associated with increased risk of incident diabetes (hazard ratio 1.42, 1.25 to 1.61), coronary heart disease (1.24, 1.13 to 1.36), and stroke (1.16, 1.05 to 1.27). Among people in whom cardiometabolic disease preceded dementia, physical inactivity was non-significantly associated with dementia (hazard ratio for physical activity assessed > 10 before dementia onset 1.30, 0.79 to 2.14). CONCLUSIONS In analyses that addressed bias due to reverse causation, physical inactivity was not associated with all-cause dementia or Alzheimer's disease, although an indication of excess dementia risk was observed in a subgroup of physically inactive individuals who developed cardiometabolic disease.
OBJECTIVE To examine whether physical inactivity is a risk factor for dementia, with attention to the role of cardiometabolic disease in this association and reverse causation bias that arises from changes in physical activity in the preclinical (prodromal) phase of dementia. DESIGN Meta-analysis of 19 prospective observational cohort studies. DATA SOURCES The Individual-Participant-Data Meta-analysis in Working Populations Consortium, the Inter-University Consortium for Political and Social Research, and the UK Data Service, including a total of 19 of a potential 9741 studies. REVIEW METHOD The search strategy was designed to retrieve individual-participant data from prospective cohort studies. Exposure was physical inactivity; primary outcomes were incident all-cause dementia and Alzheimer's disease; and the secondary outcome was incident cardiometabolic disease (that is, diabetes, coronary heart disease, and stroke). Summary estimates were obtained using random effects meta-analysis. RESULTS Study population included 404 840 people (mean age 45.5 years, 57.7% women) who were initially free of dementia, had a measurement of physical inactivity at study entry, and were linked to electronic health records. In 6.0 million person-years at risk, we recorded 2044 incident cases of all-cause dementia. In studies with data on dementia subtype, the number of incident cases of Alzheimer's disease was 1602 in 5.2 million person-years. When measured = 10 years before dementia onset, no difference in dementia risk between physically active and inactive participants was observed (hazard ratios 1.01 (0.89 to 1.14) and 0.96 (0.85 to 1.08) for the two outcomes). Physical inactivity was consistently associated with increased risk of incident diabetes (hazard ratio 1.42, 1.25 to 1.61), coronary heart disease (1.24, 1.13 to 1.36), and stroke (1.16, 1.05 to 1.27). Among people in whom cardiometabolic disease preceded dementia, physical inactivity was non-significantly associated with dementia (hazard ratio for physical activity assessed > 10 before dementia onset 1.30, 0.79 to 2.14). CONCLUSIONS In analyses that addressed bias due to reverse causation, physical inactivity was not associated with all-cause dementia or Alzheimer's disease, although an indication of excess dementia risk was observed in a subgroup of physically inactive individuals who developed cardiometabolic disease.
OBJECTIVE To examine whether physical inactivity is a risk factor for dementia, with attention to the role of cardiometabolic disease in this association and reverse causation bias that arises from changes in physical activity in the preclinical (prodromal) phase of dementia. DESIGN Meta-analysis of 19 prospective observational cohort studies. DATA SOURCES The Individual-Participant-Data Meta-analysis in Working Populations Consortium, the Inter-University Consortium for Political and Social Research, and the UK Data Service, including a total of 19 of a potential 9741 studies. REVIEW METHOD The search strategy was designed to retrieve individual-participant data from prospective cohort studies. Exposure was physical inactivity; primary outcomes were incident all-cause dementia and Alzheimer's disease; and the secondary outcome was incident cardiometabolic disease (that is, diabetes, coronary heart disease, and stroke). Summary estimates were obtained using random effects meta-analysis. RESULTS Study population included 404 840 people (mean age 45.5 years, 57.7% women) who were initially free of dementia, had a measurement of physical inactivity at study entry, and were linked to electronic health records. In 6.0 million person-years at risk, we recorded 2044 incident cases of all-cause dementia. In studies with data on dementia subtype, the number of incident cases of Alzheimer's disease was 1602 in 5.2 million person-years. When measured = 10 years before dementia onset, no difference in dementia risk between physically active and inactive participants was observed (hazard ratios 1.01 (0.89 to 1.14) and 0.96 (0.85 to 1.08) for the two outcomes). Physical inactivity was consistently associated with increased risk of incident diabetes (hazard ratio 1.42, 1.25 to 1.61), coronary heart disease (1.24, 1.13 to 1.36), and stroke (1.16, 1.05 to 1.27). Among people in whom cardiometabolic disease preceded dementia, physical inactivity was non-significantly associated with dementia (hazard ratio for physical activity assessed > 10 before dementia onset 1.30, 0.79 to 2.14). CONCLUSIONS In analyses that addressed bias due to reverse causation, physical inactivity was not associated with all-cause dementia or Alzheimer's disease, although an indication of excess dementia risk was observed in a subgroup of physically inactive individuals who developed cardiometabolic disease.
OBJECTIVE To examine whether physical inactivity is a risk factor for dementia, with attention to the role of cardiometabolic disease in this association and reverse causation bias that arises from changes in physical activity in the preclinical (prodromal) phase of dementia. DESIGN Meta-analysis of 19 prospective observational cohort studies. DATA SOURCES The Individual-Participant-Data Meta-analysis in Working Populations Consortium, the Inter-University Consortium for Political and Social Research, and the UK Data Service, including a total of 19 of a potential 9741 studies. REVIEW METHOD The search strategy was designed to retrieve individual-participant data from prospective cohort studies. Exposure was physical inactivity; primary outcomes were incident all-cause dementia and Alzheimer's disease; and the secondary outcome was incident cardiometabolic disease (that is, diabetes, coronary heart disease, and stroke). Summary estimates were obtained using random effects meta-analysis. RESULTS Study population included 404 840 people (mean age 45.5 years, 57.7% women) who were initially free of dementia, had a measurement of physical inactivity at study entry, and were linked to electronic health records. In 6.0 million person-years at risk, we recorded 2044 incident cases of all-cause dementia. In studies with data on dementia subtype, the number of incident cases of Alzheimer's disease was 1602 in 5.2 million person-years. When measured = 10 years before dementia onset, no difference in dementia risk between physically active and inactive participants was observed (hazard ratios 1.01 (0.89 to 1.14) and 0.96 (0.85 to 1.08) for the two outcomes). Physical inactivity was consistently associated with increased risk of incident diabetes (hazard ratio 1.42, 1.25 to 1.61), coronary heart disease (1.24, 1.13 to 1.36), and stroke (1.16, 1.05 to 1.27). Among people in whom cardiometabolic disease preceded dementia, physical inactivity was non-significantly associated with dementia (hazard ratio for physical activity assessed > 10 before dementia onset 1.30, 0.79 to 2.14). CONCLUSIONS In analyses that addressed bias due to reverse causation, physical inactivity was not associated with all-cause dementia or Alzheimer's disease, although an indication of excess dementia risk was observed in a subgroup of physically inactive individuals who developed cardiometabolic disease. ; Peer reviewed
Introduction: Many consequences of cerebrovascular disease are identifiable by magnetic resonance imaging (MRI), but variation in methods limits multicenter studies and pooling of data. The European Union Joint Program on Neurodegenerative Diseases (EU JPND) funded the HARmoNizing Brain Imaging MEthodS for VaScular Contributions to Neurodegeneration (HARNESS) initiative, with a focus on cerebral small vessel disease. Methods: Surveys, teleconferences, and an in-person workshop were used to identify gaps in knowledge and to develop tools for harmonizing imaging and analysis. Results: A framework for neuroimaging biomarker development was developed based on validating repeatability and reproducibility, biological principles, and feasibility of implementation. The status of current MRI biomarkers was reviewed. A website was created at www.harness-neuroimaging.org with acquisition protocols, a software database, rating scales and case report forms, and a deidentified MRI repository. Conclusions: The HARNESS initiative provides resources to reduce variability in measurement in MRI studies of cerebral small vessel disease.
Introduction: Many consequences of cerebrovascular disease are identifiable by magnetic resonance imaging (MRI), but variation in methods limits multicenter studies and pooling of data. The European Union Joint Program on Neurodegenerative Diseases (EU JPND) funded the HARmoNizing Brain Imaging MEthodS for VaScular Contributions to Neurodegeneration (HARNESS) initiative, with a focus on cerebral small vessel disease. Methods: Surveys, teleconferences, and an in-person workshop were used to identify gaps in knowledge and to develop tools for harmonizing imaging and analysis. Results: A framework for neuroimaging biomarker development was developed based on validating repeatability and reproducibility, biological principles, and feasibility of implementation. The status of current MRI biomarkers was reviewed. A website was created at www.harness-neuroimaging.org with acquisition protocols, a software database, rating scales and case report forms, and a deidentified MRI repository. Conclusions: The HARNESS initiative provides resources to reduce variability in measurement in MRI studies of cerebral small vessel disease.
INTRODUCTION: Many consequences of cerebrovascular disease are identifiable by magnetic resonance imaging (MRI), but variation in methods limits multicenter studies and pooling of data. The European Union Joint Program on Neurodegenerative Diseases (EU JPND) funded the HARmoNizing Brain Imaging MEthodS for VaScular Contributions to Neurodegeneration (HARNESS) initiative, with a focus on cerebral small vessel disease. METHODS: Surveys, teleconferences, and an in-person workshop were used to identify gaps in knowledge and to develop tools for harmonizing imaging and analysis. RESULTS: A framework for neuroimaging biomarker development was developed based on validating repeatability and reproducibility, biological principles, and feasibility of implementation. The status of current MRI biomarkers was reviewed. A website was created at www.harness-neuroimaging.org with acquisition protocols, a software database, rating scales and case report forms, and a deidentified MRI repository. CONCLUSIONS: The HARNESS initiative provides resources to reduce variability in measurement in MRI studies of cerebral small vessel disease.
In: Smith , E E , Biessels , G J , De Guio , F , de Leeuw , F E , Duchesne , S , Düring , M , Frayne , R , Ikram , M A , Jouvent , E , MacIntosh , B J , Thrippleton , M J , Vernooij , M W , Adams , H , Backes , W H , Ballerini , L , Black , S E , Chen , C , Corriveau , R , DeCarli , C , Greenberg , S M , Gurol , M E , Ingrisch , M , Job , D , Lam , B Y K , Launer , L J , Linn , J , McCreary , C R , Mok , V C T , Pantoni , L , Pike , G B , Ramirez , J , Reijmer , Y D , Romero , J R , Ropele , S , Rost , N S , Sachdev , P S , Scott , C J M , Seshadri , S , Sharma , M , Sourbron , S , Steketee , R M E , Swartz , R H , van Oostenbrugge , R , van Osch , M , van Rooden , S , Viswanathan , A , Werring , D , Dichgans , M & Wardlaw , J M 2019 , ' Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration ' , Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring , vol. 11 , no. 1 , pp. 191-204 . https://doi.org/10.1016/j.dadm.2019.01.002
Introduction: Many consequences of cerebrovascular disease are identifiable by magnetic resonance imaging (MRI), but variation in methods limits multicenter studies and pooling of data. The European Union Joint Program on Neurodegenerative Diseases (EU JPND) funded the HARmoNizing Brain Imaging MEthodS for VaScular Contributions to Neurodegeneration (HARNESS) initiative, with a focus on cerebral small vessel disease. Methods: Surveys, teleconferences, and an in-person workshop were used to identify gaps in knowledge and to develop tools for harmonizing imaging and analysis. Results: A framework for neuroimaging biomarker development was developed based on validating repeatability and reproducibility, biological principles, and feasibility of implementation. The status of current MRI biomarkers was reviewed. A website was created at www.harness-neuroimaging.org with acquisition protocols, a software database, rating scales and case report forms, and a deidentified MRI repository. Conclusions: The HARNESS initiative provides resources to reduce variability in measurement in MRI studies of cerebral small vessel disease.
BACKGROUND AND PURPOSE: Polymorphisms in coagulation genes have been associated with early-onset ischemic stroke. Here we pursue an a priori hypothesis that genetic variation in the endothelial-based receptors of the thrombomodulin-protein C system (THBD and PROCR) may similarly be associated with early-onset ischemic stroke. We explored this hypothesis utilizing a multi-stage design of discovery and replication. METHODS: Discovery was performed in the Genetics-of-Early-Onset Stroke (GEOS) Study, a biracial population-based case-control study of ischemic stroke among men and women aged 15-49 including 829 cases of first ischemic stroke (42.2% African-American) and 850 age-comparable stroke-free controls (38.1% African-American). Twenty-four single-nucleotide-polymorphisms (SNPs) in THBD and 22 SNPs in PROCR were evaluated. Following LD pruning (r2≥0.8), we advanced uncorrelated SNPs forward for association analyses. Associated SNPs were evaluated for replication in an early-onset ischemic stroke population (onset-age<60 years) consisting of 3676 cases and 21118 non-stroke controls from 6 case-control studies. Lastly, we determined if the replicated SNPs also associated with older-onset ischemic stroke in the METASTROKE data-base. RESULTS: Among GEOS Caucasians, PROCR rs9574, which was in strong LD with 8 other SNPs, and one additional independent SNP rs2069951, were significantly associated with ischemic stroke (rs9574, OR = 1.33, p = 0.003; rs2069951, OR = 1.80, p = 0.006) using an additive-model adjusting for age, gender and population-structure. Adjusting for risk factors did not change the associations; however, associations were strengthened among those without risk factors. PROCR rs9574 also associated with early-onset ischemic stroke in the replication sample (OR = 1.08, p = 0.015), but not older-onset stroke. There were no PROCR associations in African-Americans, nor were there any THBD associations in either ethnicity. CONCLUSION: PROCR polymorphisms are associated with early-onset ischemic stroke in Caucasians. ; This study was supported in part by NIH grants U01 NS069208, R01 NS100178, and R01 NS105150; an Epidemiology of Aging Training Program Grant, NIH/NIA T32 AG000262; the U.S. Department of Veterans Affairs, and the American Heart Association Cardiovascular Genome-Phenome Study (grant# 15GPSPG23770000), and an American Heart Association Discovery Grant supported by Bayer Group (grant# 17IBDG33700328). Further details regarding the data collection, organization, funding and relationships between METASTROKE and the other studies involved can be found below. Genetics of Early Onset Stroke (GEOS) Study (Baltimore, USA): GWAS data for the GEOS Study was supported by the National Institutes of Health Genes, Environment and Health Initiative (GEI) grant U01 HG004436, as part of the GENEVA consortium under GEI, with additional support provided by the Mid-Atlantic Nutrition and Obesity Research Center (P30 DK072488); and the Office of Research and Development, Medical Research Service, and the Baltimore Geriatrics Research, Education, and Clinical Center of the Department of Veterans Affairs. Genotyping services were provided by the Johns Hopkins University Center for Inherited Disease Research (CIDR), which is fully funded through a federal contract from the National Institutes of Health to the Johns Hopkins University (contract number HHSN268200782096C). Assistance with data cleaning was provided by the GENEVA Coordinating Center (U01 HG 004446; PI Bruce S Weir). Study recruitment and collection of datasets were supported by a cooperative agreement with the Division of Adult and Community Health, Centers for Disease Control and by grants from the National Institute of Neurological Disorders and Stroke (NINDS) and the NIH Office of Research on Women's Health (R01 NS45012, U01 NS069208-01). METASTROKE: METASTROKE is a collaboration of numerous international studies with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischemic stroke and its subtypes. Included studies are as follows: ASGC: Australian population control data were derived from the Hunter Community Study. We also thank the University of Newcastle for funding and the men and women of the Hunter region who participated in this study. This research was funded by grants from the Australian National and Medical Health Research Council (NHMRC Project Grant ID: 569257), the Australian National Heart Foundation (NHF Project Grant ID: G 04S 1623), the University of Newcastle, the Gladys M Brawn Fellowship scheme, and the Vincent Fairfax Family Foundation in Australia. Elizabeth G Holliday was supported by a Fellowship from the National Heart Foundation and National Stroke Foundation of Australia (ID: 100071). BRAINS: Bio-Repository of DNA in Stroke (BRAINS) is partly funded by a Senior Fellowship from the Department of Health (UK) to P Sharma, the Henry Smith Charity and the UK-India Education Research Institutive (UKIERI) from the British Council. HPS: Heart Protection Study (HPS) (ISRCTN48489393) was supported by the UK Medical Research Council (MRC), British Heart Foundation, Merck and Co (manufacturers of simvastatin), and Roche Vitamins Ltd (manufacturers of vitamins). Genotyping was supported by a grant to Oxford University and CNG from Merck and Co. Jemma C Hopewell acknowledges support from the British Heart Foundation (FS/14/55/30806). ISGS: Ischemic Stroke Genetics Study (ISGS)/Siblings With Ischemic Stroke Study (SWISS) was supported in part by the Intramural Research Program of the NIA, NIH project Z01 AG-000954-06. ISGS/SWISS used samples and clinical data from the NIH-NINDS Human Genetics Resource Center DNA and Cell Line Repository (http://ccr.coriell.org/ninds), human subjects protocol numbers 2003-081 and 2004-147. ISGS/SWISS used stroke-free participants from the Baltimore Longitudinal Study of Aging (BLSA) as controls. The inclusion of BLSA samples was supported in part by the Intramural Research Program of the NIA, NIH project Z01 AG-000015-50, human subjects protocol number 2003-078. The ISGS study was funded by NIH-NINDS grant R01 NS-42733 (JF Meschia). The SWISS study was funded by NIH-NINDS grant R01 NS-39987 (J F Meschia). This study used the high-performance computational capabilities of the Biowulf Linux cluster at the NIH (http://biowulf.nih.gov). MGH-GASROS: MGH Genes Affecting Stroke Risk and Outcome Study (MGH-GASROS) was supported by NINDS (U01 NS069208), the American Heart Association/Bugher Foundation Centers for Stroke Prevention Research 0775010N, the NIH and NHLBI's STAMPEED genomics research program (R01 HL087676), and a grant from the National Center for Research Resources. The Broad Institute Center for Genotyping and Analysis is supported by grant U54 RR020278 from the National Center for Research resources. MILANO: Milano - Besta Stroke Register Collection and genotyping of the Milan cases within CEDIR were supported by the Italian Ministry of Health (grant numbers: RC 2007/LR6, RC 2008/LR6; RC 2009/LR8; RC 2010/LR8; GR-2011-02347041). FP6 LSHM-CT-2007-037273 for the PROCARDIS control samples. WTCCC2: Wellcome Trust Case-Control Consortium 2 (WTCCC2) was principally funded by the Wellcome Trust, as part of the Wellcome Trust Case Control Consortium 2 project (085475/B/08/Z and 085475/Z/08/Z and WT084724MA). The Stroke Association provided additional support for collection of some of the St George's, London cases. The Oxford cases were collected as part of the Oxford Vascular Study which is funded by the MRC, Stroke Association, Dunhill Medical Trust, National Institute of Health Research (NIHR) and the NIHR Biomedical Research Centre, Oxford. The Edinburgh Stroke Study was supported by the Wellcome Trust (clinician scientist award to C Sudlow), and the Binks Trust. Sample processing occurred in the Genetics Core Laboratory of the Wellcome Trust Clinical Research Facility, Western General Hospital, Edinburgh. Much of the neuroimaging occurred in the Scottish Funding Council Brain Imaging Research Centre (www.sbirc.ed.ac.uk), Division of Clinical Neurosciences, University of Edinburgh, a core area of the Wellcome Trust Clinical Research Facility and part of the SINAPSE (Scottish Imaging Network—A Platform for Scientific Excellence) collaboration (www.sinapse.ac.uk), funded by the Scottish Funding Council and the Chief Scientist Office. Collection of the Munich cases and data analysis was supported by the Vascular Dementia Research Foundation. M Farrall and A Helgadottir acknowledge support from the BHF Centre of Research Excellence in Oxford and the Wellcome Trust core award (090532/Z/09/Z). VISP: The GWAS component of the Vitamin Intervention for Stroke Prevention (VISP) study was supported by the United States National Human Genome Research Institute (NHGRI), grant U01 HG005160 (PI Michèle Sale & Bradford Worrall), as part of the Genomics and Randomized Trials Network (GARNET). Genotyping services were provided by the Johns Hopkins University Center for Inherited Disease Research (CIDR), which is fully funded through a federal contract from the NIH to the Johns Hopkins University. Assistance with data cleaning was provided by the GARNET Coordinating Center (U01 HG005157; PI Bruce S Weir). Study recruitment and collection of datasets for the VISP clinical trial were supported by an investigator-initiated research grant (R01 NS34447; PI James Toole) from the United States Public Health Service, NINDS, Bethesda, Maryland. Control data obtained through the database of genotypes and phenotypes (dbGAP) maintained and supported by the United States National Center for Biotechnology Information, US National Library of Medicine. WHI: Funding support for WHI-GARNET was provided through the NHGRI GARNET (Grant Number U01 HG005152). Assistance with phenotype harmonisation and genotype cleaning, as well as with general study coordination, was provided by the GARNET Coordinating Center (U01 HG005157). Funding support for genotyping, which was performed at the Broad Institute of MIT and Harvard, was provided by the NIH Genes, Environment, and Health Initiative (GEI; U01 HG004424). SiGN: The Stroke Genetics Network (SiGN) study was funded by a cooperative agreement grant from the National Institute of Neurological Disorders and Stroke (NINDS) U01 NS069208. Genotyping services were provided by the Johns Hopkins University Center for Inherited Disease Research (CIDR), which is fully funded through a federal contract from the National Institutes of Health (NIH) to the Johns Hopkins University (contract no. HHSN268200782096C). The Biostatistics Department Genetics Coordinating Center at the University of Washington (Seattle) provided more extensive quality control of the genotype data through a subcontract with CIDR. Additional support to the Administrative Core of SiGN was provided by the Dean's Office, University of Maryland School of Medicine. This work was supported by grants received from the German Federal Ministry of Education and Research (BMBF) in the context of the e:Med program (e:AtheroSysMed), the FP7 European Union project CVgenes@target (261123), the DFG as part of the CRC 1123 (B3), the Corona Foundation and the Fondation Leducq (Transatlantic Network of Excellence on the Pathogenesis of Small Vessel Disease of the Brain).
Publisher's version (útgefin grein) ; Objective: To explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts. Methods We performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n=20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI. Results: The mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 × 10-8; and LINC00539/ZDHHC20, p = 5.82 × 10-9. Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p[BI] = 9.38 × 10-25; p [SSBI] = 5.23 × 10-14 for hypertension), smoking (p[BI]= 4.4 × 10-10; p [SSBI] = 1.2 × 10 -4), diabetes (p[BI] = 1.7 × 10 -8; p [SSBI] = 2.8 × 10 -3), previous cardiovascular disease (p [BI] = 1.0 × 10-18; p [SSBI] = 2.3 × 10-7), stroke (p [BI] = 3.9 × 10-69; p [SSBI] = 3.2 × 10 -24), and MRI-defined white matter hyperintensity burden (p [BI]=1.43 × 10-157; p [SSBI] = 3.16 × 10-106), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p ≤ 0.0022), without indication of directional pleiotropy. Conclusion: In this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI. ; CHAP: R01-AG-11101, R01-AG-030146, NIRP-14-302587. SMART: This study was supported by a grant from the Netherlands Organization for Scientific Research–Medical Sciences (project no. 904-65–095). LBC: The authors thank the LBC1936 participants and the members of the LBC1936 research team who collected and collated the phenotypic and genotypic data. The LBC1936 is supported by Age UK (Disconnected Mind Programme grant). The work was undertaken by The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross-council Lifelong Health and Wellbeing Initiative (MR/K026992/1). The brain imaging was performed in the Brain Research Imaging Centre (https://www.ed.ac.uk/clinical-sciences/edinburgh-imaging), a center in the SINAPSE Collaboration (sinapse.ac.uk) supported by the Scottish Funding Council and Chief Scientist Office. Funding from the UK Biotechnology and Biological Sciences Research Council (BBSRC) and the UK Medical Research Council is acknowledged. Genotyping was supported by a grant from the BBSRC (ref. BB/F019394/1). PROSPER: The PROSPER study was supported by an investigator-initiated grant obtained from Bristol-Myers Squibb. Prof. Dr. J.W. Jukema is an Established Clinical Investigator of the Netherlands Heart Foundation (grant 2001 D 032). Support for genotyping was provided by the seventh framework program of the European commission (grant 223004) and by the Netherlands Genomics Initiative (Netherlands Consortium for Healthy Aging grant 050-060-810). SCES and SiMES: National Medical Research Council Singapore Centre Grant NMRC/CG/013/2013. C.-Y.C. is supported by the National Medical Research Council, Singapore (CSA/033/2012), Singapore Translational Research Award (STaR) 2013. Dr. Kamran Ikram received additional funding from the Singapore Ministry of Health's National Medical Research Council (NMRC/CSA/038/2013). SHIP: SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs, as well as the Social Ministry of the Federal State of Mecklenburg–West Pomerania, and the network "Greifswald Approach to Individualized Medicine (GANI_MED)" funded by the Federal Ministry of Education and Research (grant 03IS2061A). Genome-wide data have been supported by the Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant from Siemens Healthineers, Erlangen, Germany, and the Federal State of Mecklenburg–West Pomerania. Whole-body MRI was supported by a joint grant from Siemens Healthineers, Erlangen, Germany, and the Federal State of Mecklenburg–West Pomerania. The University of Greifswald is a member of the Caché Campus program of the InterSystems GmbH. OATS (Older Australian Twins Study): OATS was supported by an Australian National Health and Medical Research Council (NHRMC)/Australian Research Council (ARC) Strategic Award (ID401162) and by a NHMRC grant (ID1045325). OATS was facilitated via access to the Australian Twin Registry, which is supported by the NHMRC Enabling Grant 310667. The OATS genotyping was partly supported by a Commonwealth Scientific and Industrial Research Organisation Flagship Collaboration Fund Grant. NOMAS: The Northern Manhattan Study is funded by the NIH grant "Stroke Incidence and Risk Factors in a Tri-Ethnic Region" (NINDS R01NS 29993). TASCOG: NHMRC and Heart Foundation. AGES: The study was funded by the National Institute on Aging (NIA) (N01-AG-12100), Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament), with contributions from the Intramural Research Programs at the NIA, the National Heart, Lung, and Blood Institute (NHLBI), and the National Institute of Neurological Disorders and Stroke (NINDS) (Z01 HL004607-08 CE). ERF: The ERF study as a part of European Special Populations Research Network (EUROSPAN) was supported by European Commission FP6 STRP grant no. 018947 (LSHG-CT-2006-01947) and also received funding from the European Community's Seventh Framework Programme (FP7/2007–2013)/grant agreement HEALTH-F4-2007-201413 by the European Commission under the programme "Quality of Life and Management of the Living Resources" of 5th Framework Programme (no. QLG2-CT-2002-01254). High-throughput analysis of the ERF data was supported by a joint grant from Netherlands Organization for Scientific Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043). Exome sequencing analysis in ERF was supported by the ZonMw grant (project 91111025). Najaf Amin is supported by the Netherlands Brain Foundation (project no. F2013[1]-28). ARIC: The Atherosclerosis Risk in Communities study was performed as a collaborative study supported by NHLBI contracts (HHSN268201100005C, HSN268201100006C, HSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C), R01HL70825, R01HL087641, R01HL59367, and R01HL086694; National Human Genome Research Institute contract U01HG004402; and NIH contract HHSN268200625226C. Infrastructure was partly supported by grant no. UL1RR025005, a component of the NIH and NIH Roadmap for Medical Research. This project was also supported by NIH R01 grant NS087541 to M.F. FHS: This work was supported by the National Heart, Lung and Blood Institute's Framingham Heart Study (contracts no. N01-HC-25195 and no. HHSN268201500001I), and its contract with Affymetrix, Inc. for genotyping services (contract no. N02-HL-6-4278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. This study was also supported by grants from the NIA (R01s AG033040, AG033193, AG054076, AG049607, AG008122, and U01-AG049505) and the NINDS (R01-NS017950, UH2 NS100605). Dr. DeCarli is supported by the Alzheimer's Disease Center (P30 AG 010129). ASPS: The research reported in this article was funded by the Austrian Science Fund (FWF) grant nos. P20545-P05, P13180, and P20545-B05, by the Austrian National Bank Anniversary Fund, P15435, and the Austrian Ministry of Science under the aegis of the EU Joint Programme–Neurodegenerative Disease Research (JPND) (jpnd.eu). LLS: The Leiden Longevity Study has received funding from the European Union's Seventh Framework Programme (FP7/2007–2011) under grant agreement no. 259679. This study was supported by a grant from the Innovation-Oriented Research Program on Genomics (SenterNovem IGE05007), the Centre for Medical Systems Biology, and the Netherlands Consortium for Healthy Ageing (grant 050-060-810), all in the framework of the Netherlands Genomics Initiative, Netherlands Organization for Scientific Research (NWO), UnileverColworth, and by BBMRI-NL, a Research Infrastructure financed by the Dutch government (NWO 184.021.007). CHS: This CHS research was supported by contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, N01HC15103, and HHSN268200960009C and grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, R01HL120393, R01HL085251, and R01HL130114 from the NHLBI with additional contribution from NINDS. Additional support was provided through R01AG023629 from the NIA. A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. Rotterdam Study: The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation of Scientific Research (NWO) Investments (no. 175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/NWO project no. 050-060-810. The Rotterdam Study is funded by Erasmus MC Medical Center and Erasmus MC University, Rotterdam, Netherlands Organization for Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. M.A.I. is supported by an NWO Veni grant (916.13.054). The 3-City Study: The 3-City Study is conducted under a partnership agreement among the Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Bordeaux, and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study is also supported by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, Mutuelle Générale de l'Education Nationale (MGEN), Institut de la Longévité, Conseils Régionaux of Aquitaine and Bourgogne, Fondation de France, and Ministry of Research–INSERM Programme "Cohortes et collections de données biologiques." C.T. and S.D. have received investigator-initiated research funding from the French National Research Agency (ANR) and from the Fondation Leducq. S.D. is supported by a starting grant from the European Research Council (SEGWAY), a grant from the Joint Programme of Neurodegenerative Disease research (BRIDGET), from the European Union's Horizon 2020 research and innovation programme under grant agreements No 643417 & No 640643, and by the Initiative of Excellence of Bordeaux University. Part of the computations were performed at the Bordeaux Bioinformatics Center (CBiB), University of Bordeaux. This work was supported by the National Foundation for Alzheimer's Disease and Related Disorders, the Institut Pasteur de Lille, the Labex DISTALZ, and the Centre National de Génotypage. ADGC: The Alzheimer Disease Genetics Consortium is supported by NIH. NIH-NIA supported this work through the following grants: ADGC, U01 AG032984, RC2 AG036528; NACC, U01 AG016976; NCRAD, U24 AG021886; NIA LOAD, U24 AG026395, U24 AG026390; Banner Sun Health Research Institute, P30 AG019610; Boston University, P30 AG013846, U01 AG10483, R01 CA129769, R01 MH080295, R01 AG017173, R01 AG025259, R01AG33193; Columbia University, P50 AG008702, R37 AG015473; Duke University, P30 AG028377, AG05128; Emory University, AG025688; Group Health Research Institute, UO1 AG06781, UO1 HG004610; Indiana University, P30 AG10133; Johns Hopkins University, P50 AG005146, R01 AG020688; Massachusetts General Hospital, P50 AG005134; Mayo Clinic, P50 AG016574; Mount Sinai School of Medicine, P50 AG005138, P01 AG002219; New York University, P30 AG08051, MO1RR00096, UL1 RR029893, 5R01AG012101, 5R01AG022374, 5R01AG013616, 1RC2AG036502, 1R01AG035137; Northwestern University, P30 AG013854; Oregon Health & Science University, P30 AG008017, R01 AG026916; Rush University, P30 AG010161, R01 AG019085, R01 AG15819, R01 AG17917, R01 AG30146; TGen, R01 NS059873; University of Alabama at Birmingham, P50 AG016582, UL1RR02777; University of Arizona, R01 AG031581; University of California, Davis, P30 AG010129; University of California, Irvine, P50 AG016573, P50, P50 AG016575, P50 AG016576, P50 AG016577; University of California, Los Angeles, P50 AG016570; University of California, San Diego, P50 AG005131; University of California, San Francisco, P50 AG023501, P01 AG019724; University of Kentucky, P30 AG028383, AG05144; University of Michigan, P50 AG008671; University of Pennsylvania, P30 AG010124; University of Pittsburgh, P50 AG005133, AG030653; University of Southern California, P50 AG005142; University of Texas Southwestern, P30 AG012300; University of Miami, R01 AG027944, AG010491, AG027944, AG021547, AG019757; University of Washington, P50 AG005136; Vanderbilt University, R01 AG019085; and Washington University, P50 AG005681, P01 AG03991. The Kathleen Price Bryan Brain Bank at Duke University Medical Center is funded by NINDS grant NS39764, NIMH MH60451, and by GlaxoSmithKline. Genotyping of the TGEN2 cohort was supported by Kronos Science. The TGen series was also funded by NIA grant AG041232, the Banner Alzheimer's Foundation, The Johnnie B. Byrd Sr. Alzheimer's Institute, the Medical Research Council, and the state of Arizona and also includes samples from the following sites: Newcastle Brain Tissue Resource (funding via the Medical Research Council [MRC], local NHS trusts, and Newcastle University), MRC London Brain Bank for Neurodegenerative Diseases (funding via the Medical Research Council), South West Dementia Brain Bank (funding via numerous sources including the Higher Education Funding Council for England [HEFCE], Alzheimer's Research Trust [ART], BRACE, as well as North Bristol NHS Trust Research and Innovation Department and DeNDRoN), The Netherlands Brain Bank (funding via numerous sources including Stichting MS Research, Brain Net Europe, Hersenstichting Nederland Breinbrekend Werk, International Parkinson Fonds, Internationale Stiching Alzheimer Onderzoek), Institut de Neuropatologia, Servei Anatomia Patologica, and Universitat de Barcelona). ADNI: Funding for ADNI is through the Northern California Institute for Research and Education by grants from Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson & Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., Alzheimer's Association, Alzheimer's Drug Discovery Foundation, the Dana Foundation, and the National Institute of Biomedical Imaging and Bioengineering and NIA grants U01 AG024904, RC2 AG036535, and K01 AG030514. Support was also provided by the Alzheimer's Association (LAF, IIRG-08-89720; MAP-V, IIRG-05-14147) and the US Department of Veterans Affairs Administration, Office of Research and Development, Biomedical Laboratory Research Program. SiGN: Stroke Genetic Network (SiGN) was supported in part by award nos. U01NS069208 and R01NS100178 from NINDS. Genetics of Early-Onset Stroke (GEOS) Study was supported by the NIH Genes, Environment and Health Initiative (GEI) grant U01 HG004436, as part of the GENEVA consortium under GEI, with additional support provided by the Mid-Atlantic Nutrition and Obesity Research Center (P30 DK072488); and the Office of Research and Development, Medical Research Service, and the Baltimore Geriatrics Research, Education, and Clinical Center of the Department of Veterans Affairs. Genotyping services were provided by the Johns Hopkins University Center for Inherited Disease Research (CIDR), which is fully funded through a federal contract from the NIH to Johns Hopkins University (contract no. HHSN268200782096C). Assistance with data cleaning was provided by the GENEVA Coordinating Center (U01 HG 004446; PI Bruce S. Weir). Study recruitment and assembly of datasets were supported by a Cooperative Agreement with the Division of Adult and Community Health, Centers for Disease Control and Prevention, and by grants from NINDS and the NIH Office of Research on Women's Health (R01 NS45012, U01 NS069208-01). METASTROKE: ASGC: Australian population control data were derived from the Hunter Community Study. This research was funded by grants from the Australian National and Medical Health Research Council (NHMRC Project Grant ID: 569257), the Australian National Heart Foundation (NHF Project Grant ID: G 04S 1623), the University of Newcastle, the Gladys M Brawn Fellowship scheme, and the Vincent Fairfax Family Foundation in Australia. E.G.H. was supported by a Fellowship from the NHF and National Stroke Foundation of Australia (ID: 100071). J.M. was supported by an Australian Postgraduate Award. BRAINS: Bio-Repository of DNA in Stroke (BRAINS) is partly funded by a Senior Fellowship from the Department of Health (UK) to P.S., the Henry Smith Charity, and the UK-India Education Research Institutive (UKIERI) from the British Council. GEOS: Genetics of Early Onset Stroke (GEOS) Study, Baltimore, was supported by GEI Grant U01 HG004436, as part of the GENEVA consortium under GEI, with additional support provided by the Mid-Atlantic Nutrition and Obesity Research Center (P30 DK072488), and the Office of Research and Development, Medical Research Service, and the Baltimore Geriatrics Research, Education, and Clinical Center of the Department of Veterans Affairs. Genotyping services were provided by the Johns Hopkins University Center for Inherited Disease Research (CIDR), which is fully funded through a federal contract from the NIH to the Johns Hopkins University (contract no. HHSN268200782096C). Assistance with data cleaning was provided by the GENEVA Coordinating Center (U01 HG 004446; PI Bruce S. Weir). Study recruitment and assembly of datasets were supported by a Cooperative Agreement with the Division of Adult and Community Health, Centers for Disease Control and Prevention, and by grants from NINDS and the NIH Office of Research on Women's Health (R01 NS45012, U01 NS069208-01). HPS: Heart Protection Study (HPS) (ISRCTN48489393) was supported by the UK MRC, British Heart Foundation, Merck and Co. (manufacturers of simvastatin), and Roche Vitamins Ltd. (manufacturers of vitamins). Genotyping was supported by a grant to Oxford University and CNG from Merck and Co. J.C.H. acknowledges support from the British Heart Foundation (FS/14/55/30806). ISGS: Ischemic Stroke Genetics Study (ISGS)/Siblings With Ischemic Stroke Study (SWISS) was supported in part by the Intramural Research Program of the NIA, NIH project Z01 AG-000954-06. ISGS/SWISS used samples and clinical data from the NIH-NINDS Human Genetics Resource Center DNA and Cell Line Repository (ccr.coriell.org/ninds), human subjects protocol nos. 2003-081 and 2004-147. ISGS/SWISS used stroke-free participants from the Baltimore Longitudinal Study of Aging (BLSA) as controls. The inclusion of BLSA samples was supported in part by the Intramural Research Program of the NIA, NIH project Z01 AG-000015-50, human subjects protocol no. 2003-078. The ISGS study was funded by NIH-NINDS Grant R01 NS-42733 (J.F.M.). The SWISS study was funded by NIH-NINDS Grant R01 NS-39987 (J.F.M.). This study used the high-performance computational capabilities of the Biowulf Linux cluster at the NIH (biowulf.nih.gov). MGH-GASROS: MGH Genes Affecting Stroke Risk and Outcome Study (MGH-GASROS) was supported by NINDS (U01 NS069208), the American Heart Association/Bugher Foundation Centers for Stroke Prevention Research 0775010N, the NIH and NHLBI's STAMPEED genomics research program (R01 HL087676), and a grant from the National Center for Research Resources. The Broad Institute Center for Genotyping and Analysis is supported by grant U54 RR020278 from the National Center for Research resources. Milan: Milano–Besta Stroke Register Collection and genotyping of the Milan cases within CEDIR were supported by the Italian Ministry of Health (grant nos.: RC 2007/LR6, RC 2008/LR6; RC 2009/LR8; RC 2010/LR8; GR-2011-02347041), FP6 LSHM-CT-2007-037273 for the PROCARDIS control samples. WTCCC2: Wellcome Trust Case-Control Consortium 2 (WTCCC2) was principally funded by the Wellcome Trust, as part of the Wellcome Trust Case Control Consortium 2 project (085475/B/08/Z and 085475/Z/08/Z and WT084724MA). The Stroke Association provided additional support for collection of some of the St George's, London cases. The Oxford cases were collected as part of the Oxford Vascular Study, which is funded by the MRC, Stroke Association, Dunhill Medical Trust, National Institute of Health Research (NIHR), and the NIHR Biomedical Research Centre, Oxford. The Edinburgh Stroke Study was supported by the Wellcome Trust (clinician scientist award to C.L.M.S.) and the Binks Trust. Sample processing occurred in the Genetics Core Laboratory of the Wellcome Trust Clinical Research Facility, Western General Hospital, Edinburgh. Much of the neuroimaging occurred in the Scottish Funding Council Brain Imaging Research Centre (https://www.ed.ac.uk/clinical-sciences/edinburgh-imaging), Division of Clinical Neurosciences, University of Edinburgh, a core area of the Wellcome Trust Clinical Research Facility, and part of the SINAPSE (Scottish Imaging Network: A Platform for Scientific Excellence) collaboration (sinapse.ac.uk), funded by the Scottish Funding Council and the Chief Scientist Office. Collection of the Munich cases and data analysis was supported by the Vascular Dementia Research Foundation. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements no. 666881, SVDs@target (to M.D.) and no. 667375, CoSTREAM (to M.D.); the DFG as part of the Munich Cluster for Systems Neurology (EXC 1010 SyNergy) and the CRC 1123 (B3) (to M.D.); the Corona Foundation (to M.D.); the Fondation Leducq (Transatlantic Network of Excellence on the Pathogenesis of Small Vessel Disease of the Brain) (to M.D.); the e:Med program (e:AtheroSysMed) (to M.D.) and the FP7/2007-2103 European Union project CVgenes@target (grant agreement no. Health-F2-2013-601456) (to M.D.). M.F. and A.H. acknowledge support from the BHF Centre of Research Excellence in Oxford and the Wellcome Trust core award (090532/Z/09/Z). VISP: The GWAS component of the Vitamin Intervention for Stroke Prevention (VISP) study was supported by the US National Human Genome Research Institute (NHGRI), grant U01 HG005160 (PI Michèle Sale and Bradford Worrall), as part of the Genomics and Randomized Trials Network (GARNET). Genotyping services were provided by the Johns Hopkins University Center for Inherited Disease Research (CIDR), which is fully funded through a federal contract from the NIH to Johns Hopkins University. Assistance with data cleaning was provided by the GARNET Coordinating Center (U01 HG005157; PI Bruce S. Weir). Study recruitment and collection of datasets for the VISP clinical trial were supported by an investigator-initiated research grant (R01 NS34447; PI James Toole) from the US Public Health Service, NINDS, Bethesda, MD. Control data obtained through the database of genotypes and phenotypes (dbGAP) maintained and supported by the United States National Center for Biotechnology Information, US National Library of Medicine. WHI: Funding support for WHI-GARNET was provided through the NHGRI GARNET (grant no. U01 HG005152). Assistance with phenotype harmonization and genotype cleaning, as well as with general study coordination, was provided by the GARNET Coordinating Center (U01 HG005157). Funding support for genotyping, which was performed at the Broad Institute of MIT and Harvard, was provided by the GEI (U01 HG004424). R.L. is a senior clinical investigator of FWO Flanders. F.W.A. is supported by a Dekker scholarship-Junior Staff Member 2014T001–Netherlands Heart Foundation and UCL Hospitals NIHR Biomedical Research Centre. ; Peer Reviewed
Background: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. Principal Findings: In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10-6) and 14 (IGHV1-67 p = 7.9×10-8) which indexed novel susceptibility loci. Significance: The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease ; The i-Select chips was funded by the French National Foundation on Alzheimer's disease and related disorders. The French National Fondation on Alzheimer's disease and related disorders supported several I-GAP meetings and communications. Data management involved the Centre National de Génotypage,and was supported by the Institut Pasteur de Lille, Inserm, FRC (fondation pour la recherche sur le cerveau) and Rotary. This work has been developed and supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease) and by the LABEX GENMED grant (Medical Genomics). The French National Foundation on Alzheimer's disease and related disorders and the Alzheimer's Association (Chicago, Illinois) grant supported IGAP in-person meetings, communication and the Alzheimer's Association (Chicago, Illinois) grant provided some funds to each consortium for analyses. EADI The authors thank Dr. Anne Boland (CNG) for her technical help in preparing the DNA samples for analyses. This work was supported by the National Foundation for Alzheimer's disease and related disorders, the Institut Pasteur de Lille and the Centre National de Génotypage. The Three-City Study was performed as part of a collaboration between the Institut National de la Santé et de la Recherche Médicale (Inserm), the Victor Segalen Bordeaux II University and Sanofi-Synthélabo. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study was also funded by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, MGEN, Institut de la Longévité, Agence Française de Sécurité Sanitaire des Produits de Santé, the Aquitaine and Bourgogne Regional Councils, Agence Nationale de la Recherche, ANR supported the COGINUT and COVADIS projects. Fondation de France and the joint French Ministry of Research/INSERM «Cohortes et collections de données biologiques» programme. Lille Génopôle received an unconditional grant from Eisai. The Three-city biological bank was developed and maintained by the laboratory for genomic analysis LAG-BRC - Institut Pasteur de Lille. Belgium sample collection: The patients were clinically and pathological characterized by the neurologists Sebastiaan Engelborghs, Rik Vandenberghe and Peter P. De Deyn, and in part genetically by Caroline Van Cauwenberghe, Karolien Bettens and Kristel Sleegers. Research at the Antwerp site is funded in part by the Belgian Science Policy Office Interuniversity Attraction Poles program, the Foundation Alzheimer Research (SAO-FRA), the Flemish Government initiated Methusalem Excellence Program, the Research Foundation Flanders (FWO) and the University of Antwerp Research Fund, Belgium. Karolien Bettens is a postdoctoral fellow of the FWO. The Antwerp site authors thank the personnel of the VIB Genetic Service Facility, the Biobank of the Institute Born-Bunge and the Departments of Neurology and Memory Clinics at the Hospital Network Antwerp and the University Hospitals Leuven. Finish sample collection: Financial support for this project was provided by the Health Research Council of the Academy of Finland, EVO grant 5772708 of Kuopio University Hospital, and the Nordic Centre of Excellence in Neurodegeneration. Italian sample collections: the Bologna site (FL) obtained funds from the Italian Ministry of research and University as well as Carimonte Foundation. The Florence site was supported by grant RF-2010-2319722, grant from the the Cassa di Risparmio di Pistoia e Pescia (Grant 2012) and the Cassa di Risparmio di Firenze (Grant 2012). The Milan site was supported by a grant from the «fondazione Monzino». The authors thank the expert contribution of Mr. Carmelo Romano. The Roma site received financial support from Italian Ministry of Health, Grant RF07-08 and RC08-09-10-11-12. The Pisa site is grateful to Dr. Annalisa LoGerfo for her technical assistance in the DNA purification studies. Spanish sample collection: the Madrid site (MB) was supported by grants of the Ministerio de Educación y Ciencia and the Ministerio de Sanidad y Consumo (Instituto de Salud Carlos III), and an institutional grant of the Fundación Ramón Areces to the CBMSO. The authors thank I. Sastre and Dr. A. Martínez-García for the preparation and control of the DNA collection, and Drs. P. Gil and P. Coria for their cooperation in the cases/controls recruitment. The authors are grateful to the Asociación de Familiares de Alzheimer de Madrid (AFAL) for continuous encouragement and help. Swedish sample collection: Financially supported in part by the Swedish Brain Power network, the Marianne and Marcus Wallenberg Foundation, the Swedish Research Council (521-2010-3134), the King Gustaf V and Queen Victoria's Foundation of Freemasons, the Regional Agreement on Medical Training and Clinical Research (ALF) between Stockholm County Council and the Karolinska Institutet, the Swedish Brain Foundation and the Swedish Alzheimer Foundation. CHARGE AGES: The AGES-Reykjavik Study is funded by National Institutes of Health (NIH) contract N01-AG-12100 (National Institute on Aging (NIA) with contributions from the National Eye Institute, National Institute on Deafness and Other Communication Disorders and National Heart, Lung, and Blood Institute (NHLBI)), the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). ASPS/PRODEM: The Austrian Stroke Prevention Study and The Prospective Dementia Register of the Austrian Alzheimer Society was supported by The Austrian Science Fond (FWF) grant number P20545-P05 (H. Schmidt) and P13180; The Austrian Alzheimer Society; The Medical University of Graz. Cardiovascular Health Study (CHS): This CHS research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, and HHSN268200960009C; and NHLBI grants HL080295, HL087652, HL105756 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG023629, AG15928, AG20098, AG027058 and AG033193 (Seshadri) from the NIA. A full list of CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. Framingham Heart Study (FHS): This work was supported by the National Heart, Lung and Blood Institute's Framingham Heart Study (Contract No. N01-HC-25195) and its contract with A_ymetrix, Inc for genotyping services (Contract No. N02-HL-6-4278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. This study as also supported by grants from the National Institute on Aging: AG08122 and AG033193 (Seshadri). Drs. Seshadri and DeStefano were also supported by additional grants from the National Institute on Aging: (R01 AG16495; AG031287, AG033040), the National Institute of Neurological Disorders and Stroke (R01 NS17950), and the National Heart, Lung and Blood Institute (U01 HL096917, HL093029 and K24HL038444, RC2-HL102419 and UC2 HL103010. Fundació ACE would like to thank patients and controls who participated in this project. This work has been funded by the Fundación Alzheimur (Murcia), the Ministerio de Educación y Ciencia (PCT-010000-2007-18), (DEX-580000-2008-4), (Gobierno de España), Corporación Tecnológica de Andalucía (08/211) and Agencia IDEA (841318) (Consejería de Innovación, Junta de Andalucía). The authors thank to Ms. Trinitat Port-Carbó and her family for their generous support of Fundació ACE research programs. The Rotterdam Study: The Rotterdam Study was funded by Erasmus Medical Center and Erasmus University, Rotterdam; the Netherlands Organization for Health Research and Development; the Research Institute for Diseases in the Elderly; the Ministry of Education, Culture and Science; the Ministry for Health, Welfare and Sports; the European Commission;and the Municipality of Rotterdam; by grants from the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), Internationale Stichting Alzheimer Onderzoek, Hersenstichting Nederland, the Netherlands Genomics Initiative–Netherlands Organization for Scientific Research (Center for Medical Systems Biology and the Netherlands Consortium for Healthy Aging), the Seventh Framework Program (FP7/2007-2013), the ENGAGE project (grant agreement HEALTH-F4-2007-201413), MRACE-grant from the Erasmus Medical Center, the Netherlands Organization for Health Research and Development (ZonMW Veni-grant no. 916.13.054). ARIC: The Atherosclerosis Risk in Communities Study (ARIC) is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01- HC-55019, N01-HC-55020, N01-HC-55021, N01-HC-55022 and grants R01-HL087641, RC2-HL102419 (Boerwinkle, CHARGE-S), UC2 HL103010, U01-HL096917 (Mosley) and R01-HL093029; NHGRI contract U01- HG004402; and NIH contract HHSN268200625226C and NIA: R01 AG033193 (Seshadri). Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. GERAD Cardiff University was supported by the Wellcome Trust, Medical Research Council (MRC), Alzheimer's Research United Kingdom (ARUK) and the Welsh Government. ARUK supported sample collections at the Kings College London, the South West Dementia Bank, Universities of Cambridge, Nottingham, Manchester and Belfast. The Belfast group acknowledges support from the Alzheimer's Society, Ulster Garden Villages, N. Ireland R & D Office and the Royal College of Physicians/Dunhill Medical Trust. The MRC and Mercer's Institute for Research on Ageing supported the Trinity College group. DCR is a Wellcome Trust Principal Research fellow. The South West Dementia Brain Bank acknowledges support from Bristol Research into Alzheimer's and Care of the Elderly. The Charles Wolfson Charitable Trust supported the OPTIMA group. Washington University was funded by NIH grants, Barnes Jewish Foundation and the Charles and Joanne Knight Alzheimer's Research Initiative. Patient recruitment for the MRC Prion Unit/UCL Department of Neurodegenerative Disease collection was supported by the UCLH/UCL Biomedical Centre and their work was supported by the NIHR Queen Square Dementia BRU. LASER-AD was funded by Lundbeck SA. The Bonn group would like to thank Dr. Heike Koelsch for her scientific support. The Bonn group was funded by the German Federal Ministry of Education and Research (BMBF): Competence Network Dementia (CND) grant number 01GI0102, 01GI0711, 01GI0420. The AgeCoDe study group was supported by the German Federal Ministry for Education and Research grants 01 GI 0710, 01 GI 0712, 01 GI 0713, 01 GI 0714, 01 GI 0715, 01 GI 0716, 01 GI 0717. The Homburg group was funded by the German Federal Ministry of Education and Research (BMBF): German National Genome Research Network (NGFN); Alzheimer's disease Integrated Genome Research Network; AD-IG: 01GS0465. Genotyping of the Bonn case-control sample was funded by the German centre for Neurodegenerative Diseases (DZNE), Germany. The GERAD Consortium also used samples ascertained by the NIMH AD Genetics Initiative. Harald Hampel was supported by a grant of the Katharina-Hardt-Foundation, Bad Homburg vor der Höhe, Germany. The KORA F4 studies were financed by Helmholtz Zentrum München; German Research Center for Environmental Health; BMBF; German National Genome Research Network and the Munich Center of Health Sciences. The Heinz Nixdorf Recall cohort was funded by the Heinz Nixdorf Foundation (Dr. Jur. G.Schmidt, Chairman) and BMBF. Coriell Cell Repositories is supported by NINDS and the Intramural Research Program of the National Institute on Aging. The authors acknowledge use of genotype data from the 1958 Birth Cohort collection, funded by the MRC and the Wellcome Trust which was genotyped by the Wellcome Trust Case Control Consortium and the Type-1 Diabetes Genetics Consortium, sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Allergy and Infectious Diseases, National Human Genome Research Institute, National Institute of Child Health and Human Development and Juvenile Diabetes Research Foundation International. The Nottingham Group (KM) are supported by the Big Lottery. MRC CFAS is part of the consortium and data will be included in future analyses. ADGC The National Institutes of Health, National Institute on Aging (NIH-NIA) supported this work through the following grants: ADGC, U01 AG032984, RC2 AG036528; NACC, U01 AG016976; NCRAD, U24 AG021886; NIA LOAD, U24 AG026395, R01 AG041797; MIRAGE R01 AG025259; Banner Sun Health Research Institute P30 AG019610; Boston University, P30 AG013846, U01 AG10483, R01 CA129769, R01 MH080295, R01 AG017173, R01AG33193; Columbia University, P50 AG008702, R37 AG015473; Duke University, P30 AG028377, AG05128; Emory University, AG025688; Group Health Research Institute, UO1 AG06781, UO1 HG004610; Indiana University, P30 AG10133; Johns Hopkins University, P50 AG005146, R01 AG020688; Massachusetts General Hospital, P50 AG005134; Mayo Clinic, P50 AG016574; Mount Sinai School of Medicine, P50 AG005138, P01 AG002219; New York University, P30 AG08051, MO1RR00096, and UL1 RR029893; Northwestern University, P30 AG013854; Oregon Health & Science University, P30 AG008017, R01 AG026916; Rush University, P30 AG010161, R01 AG019085, R01 AG15819, R01 AG17917, R01 AG30146; TGen, R01 NS059873; University of Alabama at Birmingham, P50 AG016582, UL1RR02777; University of Arizona, R01 AG031581; University of California, Davis, P30 AG010129; University of California, Irvine, P50 AG016573, P50, P50 AG016575, P50 AG016576, P50 AG016577; University of California, Los Angeles, P50 AG016570; University of California, San Diego, P50 AG005131; University of California, San Francisco, P50 AG023501, P01 AG019724; University of Kentucky, P30 AG028383; University of Michigan, P50 AG008671; University of Pennsylvania, P30 AG010124; University of Pittsburgh, P50 AG005133, AG030653, AG041718; University of Southern California, P50 AG005142; University of Texas Southwestern, P30 AG012300; University of Miami, R01 AG027944, AG010491, AG027944, AG021547, AG019757; University of Washington, P50 AG005136; Vanderbilt University, R01 AG019085; and Washington University, P50 AG005681, P01 AG03991. The Kathleen Price Bryan Brain Bank at Duke University Medical Center is funded by NINDS grant # NS39764, NIMH MH60451 and by Glaxo Smith Kline. Genotyping of the TGEN2 cohort was supported by Kronos Science. The TGen series was also funded by NIA grant AG034504 to AJM, The Banner Alzheimer's Foundation, The Johnnie B. Byrd Sr. Alzheimer's Institute, the Medical Research Council, and the state of Arizona and also includes samples from the following sites: Newcastle Brain Tissue Resource (funding via the Medical Research Council, local NHS trusts and Newcastle University), MRC London Brain Bank for Neurodegenerative Diseases (funding via the Medical Research Council), South West Dementia Brain Bank (funding via numerous sources including the Higher Education Funding Council for England (HEFCE), Alzheimer's Research Trust (ART), BRACE as well as North Bristol NHS Trust Research and Innovation Department and DeNDRoN), The Netherlands Brain Bank (funding via numerous sources including Stichting MS Research, Brain Net Europe, Hersenstichting Nederland Breinbrekend Werk, International Parkinson Fonds, Internationale Stiching Alzheimer Onderzoek), Institut de Neuropatologia, Servei Anatomia Patologica, Universitat de Barcelona. Marcelle Morrison-Bogorad, PhD., Tony Phelps, PhD and Walter Kukull PhD are thanked for helping to co-ordinate this collection. ADNI Funding for ADNI is through the Northern California Institute for Research and Education by grants from Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, Glaxo-SmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., Alzheimer's Association, Alzheimer's Drug Discovery Foundation, the Dana Foundation, and by the National Institute of Biomedical Imaging and Bioengineering and NIA grants U01 AG024904, RC2 AG036535, K01 AG030514. Data collection and sharing for this project was funded by the ADNI (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer's Association; Alzheimer's Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129 and K01 AG030514. The authors thank Drs. D. Stephen Snyder and Marilyn Miller from NIA who are ex-o_cio ADGC members. Support was also from the Alzheimer's Association (LAF, IIRG-08-89720; MP-V, IIRG-05-14147) and the United States Department of Veterans Affairs Administration, Office of Research and Development, Biomedical Laboratory Research Program. Peter St George-Hyslop is supported by Wellcome Trust, Howard Hughes Medical Institute, and the Canadian Institute of Health
25 páginas, 6 figuras, 2 tablas ; Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele. ; This work was funded by a grant (EADB) from the EU Joint Programme – Neurodegenerative Disease Research. INSERM UMR1167 is also funded by the INSERM, Institut Pasteur de Lille, Lille Métropole Communauté Urbaine and French government's LABEX DISTALZ program (development of innovative strategies for a transdisciplinary approach to AD). Full consortium acknowledgements and funding are in the Supplementary Not ; Peer reviewed