The world's biodiversity is currently in rapid decline - Europe being no exception - with as principal cause a human-mediated global change. The Natura 2000 network is an important conservation tool for European biodiversity; it is a network of natural and semi-natural sites within Europe with high heritage values due to the exceptional flora and fauna they contain. Here, we evaluated the coverage of 300 threatened species by the Natura 2000 network, and determined potential factors influencing the designation of sites and the structure of the network within a country (social, ecological and demographic national factors). Our analysis was based on a coverage ratio between the Natura 2000 sites and distribution maps of threatened European species. We showed that the distributions of a large proportion of threatened species of mammals, birds and reptiles considered in our study were highly covered (above 90%) by the current Natura 2000 network, demonstrating that the Natura 2000 network also covers species not listed in the annexes of the Nature Directives. However, our results confirm that a large proportion of threatened species (some of them listed on the European annexes), especially fishes, are currently poorly covered by the Natura 2000 network. The coverage of species likely seemed to be highly related to national demographic factors, i.e. the proportion of the national urban population. Our analysis also suggested that the designation of sites depends too strongly on governmental politics, economic and cultural criteria, and interactions between society and the environment. A more effective process might be necessary to ensure the Natura 2000 network reaches its potential as the most important and comprehensive network of protected areas intended to halt the loss of biodiversity in Europe in the near future.
AbstractBackgroundChemical pollution forms a severe threat for human and environmental health. While the risks for European lowland water bodies are well known, there is little knowledge on remote aquatic ecosystems and particularly mountain lakes, despite their importance for the provision of freshwater. Here, we critically review the current knowledge on the exposure and risk by chemical pollution for mountain lakes and present a tiered approach on how to advance effectively our understanding in the future.ResultsGenerally, pollutant monitoring data are currently incomplete, with many regions and substances having been only poorly investigated. More reliable data exist only for persistent organic pollutants (POPs). However, there is increasing evidence that even remote mountain lakes are exposed to a wide range of organic pollutants. Among them potent pesticides currently used in agricultural and biocidal applications, such as diazinon and permethrin. The exposure of mountain lakes to pollutants follows a complex pattern. Pollutants are introduced into mountain lakes via the atmospheric deposition and run-off from the watershed, but also local sources, like tourism and pastoralism. Our risk assessment and recent biomonitoring studies suggest that there are widespread chronic toxic risks on crustacean in mountain ranges. If mountain ranges are exposed to tourism and pastoralism, even acute toxic effects on crustacean are possible. Thereby, the vulnerability of mountain lakes to toxic effects has to be expected to be particularly high due to the harsh environmental conditions at high altitudes, the organism's traits, the insular position of mountain lakes and a lower species richness with increasing altitudes. Furthermore, there is little knowledge on the biological processes leading to the degradation of chemical pollutants under the environmental and ecological conditions of mountain ecosystems.ConclusionWhile the exposure and sensitivity of mountain aquatic ecosystems is currently poorly investigated, the existing data suggest that it is very likely that also water bodies as remote as mountain lakes do suffer from pollution-induced toxicity. To verify this suggestion and expand the existing knowledge, it is necessary that future studies combine a more holistic pollution monitoring with exposure modelling and links to biological effects. Only then will it be possible to obtain a more reliable understanding of the impact of chemical pollution on aquatic mountain ecosystems and to protect these fragile ecosystems.
Public participation is a key element in nature conservation in Europe and a necessity for collecting broad scale data on biodiversity and its dynamics. However, vast societal differences exist between eastern and western European countries, resulting in problems for public participation in post-communist states as compared to western countries. Here, we compare diversity in monitoring practices and public participation in countries with different political histories. Drawing on in-depth ethnographic studies conducted in Lithuania and Poland, as well as a rapid assessment in Denmark, we have focused on the historical, cultural and social determinants of the volunteers' participation in biodiversity monitoring. Our results indicate the reasons why volunteer involvement—as an expression of a participatory approach—has a lower incidence in the post-communist countries, compared to voluntarism common in occidental democracies. We discuss our results in the context of the main social factors considered to be a legacy of the Soviet regime.
Public participation is a key element in nature conservation in Europe and a necessity for collecting broad scale data on biodiversity and its dynamics. However, vast societal differences exist between eastern and western European countries, resulting in problems for public participation in post-communist states as compared to western countries. Here, we compare diversity in monitoring practices and public participation in countries with different political histories. Drawing on in-depth ethnographic studies conducted in Lithuania and Poland, as well as a rapid assessment in Denmark, we have focused on the historical, cultural and social determinants of the volunteers' participation in biodiversity monitoring. Our results indicate the reasons why volunteer involvement—as an expression of a participatory approach—has a lower incidence in the post-communist countries, compared to voluntarism common in occidental democracies. We discuss our results in the context of the main social factors considered to be a legacy of the Soviet regime.
Temporal baselines are needed for biodiversity, in order for the change in biodiversity to be measured over time, the targets for biodiversity conservation to be defined and conservation progress to be evaluated. Limited biodiversity information is widely recognized as a major barrier for identifying temporal baselines, although a comprehensive quantitative assessment of this is lacking. Here, we report on the temporal baselines that could be drawn from biodiversity monitoring schemes in Europe and compare those with the rise of important anthropogenic pressures. Most biodiversity monitoring schemes were initiated late in the 20th century, well after anthropogenic pressures had already reached half of their current magnitude. Setting temporal baselines from biodiversity monitoring data would therefore underestimate the full range of impacts of major anthropogenic pressures. In addition, biases among taxa and organization levels provide a truncated picture of biodiversity over time. These limitations need to be explicitly acknowledged when designing management strategies and policies as they seriously constrain our ability to identify relevant conservation targets aimed at restoring or reversing biodiversity losses. We discuss the need for additional research efforts beyond standard biodiversity monitoring to reconstruct the impacts of major anthropogenic pressures and to identify meaningful temporal baselines for biodiversity. ; This work was initiated under the framework of the FP7 project EU BON (contract 308454), which provided financial support to J.B.M., D.S.S., N.T., K.H. and N.B. Additional support was provided to L.B. and N.T. through the FORESTCAST project (CGL2014-59742, Ministry of Economy and Competitiveness of Spain).
Setting aside protected areas is widely recognized as one of the most effective measures to prevent species from extinction. Accordingly, there has been a tremendous effort by governments worldwide to establish protected areas, resulting in over 100,000 sites, which are set aside, to achieve the 10% target proposed at the Fourth World Park Congress in 1992 in Caracas. The main effort of the European to achieve this target is the Natura 2000 network of protected areas, comprising over 25,000 sites representing 18 % of the area of the 27 Member States of the European Union. The designation of Natura 2000 sites was based on species and habitats listed in the Annexes of the Habitats and Birds Directive. The effectiveness of the selection process and the resulting Natura 2000 network has often been questioned as each country made its designations largely independently and in most cases without considering the theories of optimal reserve site selection. However, the effectiveness of the selection process and the Natura 2000 network has never been explicitly analysed at the European scale. Here we present such an analysis focusing on the representation of Annex II species of the Habitats Directive in the Natura 2000 network relative to a random allocation of species to sites. Our results show that the network is effective in covering target species and minimizing the number of gap species (i.e. species not represented in a single site of the Natura 2000 network). We demonstrate that the representation is uneven among species. Some species are overrepresented and many species are only represented in a low number of sites. We show that this is mainly due to differing patterns in species ranges, as wide-spread species are inevitably represented in many sites, but narrow ranged species are often covered only by a small number of sites in a particular area. Finally, we propose a representation index that detects species that are underrepresented and could be used to direct future conservation efforts.
Biodiversity is threatened on a global scale and the losses are ongoing. In order to stop further losses and maintain important ecosystem services, programmes have been put into place to reduce and ideally halt these processes. A whole suite of different approaches is needed to meet these goals. One major scientific contribution is to collate, integrate and analyse the large amounts of fragmented and diverse biodiversity data to determine the current status and trends of biodiversity in order to inform the relevant decision makers. To contribute towards the achievement of these challenging tasks, the project EU BON was developed. The project is focusing mainly on the European continent but contributes at the same time to a much wider global initiative the Group on Earth Observations Biodiversity Observation Network (GEO BON), which itself is a part of the Group of Earth Observation System of Systems (GEOSS). EU BON will build on existing infrastructures such as GBIF, LifeWatch and national biodiversity data centres in Europe and will integrate relevant biodiversity data from on-ground observations to remote sensing information, covering terrestrial, freshwater and marine habitats.A key feature of EU BON will be the delivery of relevant, fully integrated data to multiple and different stakeholders and end users ranging from local to global levels. Through development and application of new standards and protocols, EU BON will enable greater interoperability of different data layers and systems, provide access to improved analytical tools and services, and will provide better harmonized biodiversity recording and monitoring schemes from citizen science efforts to long-term research programs to mainstream future data collecting. Furthermore EU BON will support biodiversity science-policy interfaces, and facilitate political decisions for sound environmental management, also to help conserve biodiversity for human well-being at different levels, ranging from communal park management to the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES). Additionally, the project will strengthen European capacities and infrastructures for environmental information management and sustainable development. The following paper outlines the framework and the approach that is pursued.
There are a multitude of biodiversity informatics projects, datasets, databases and initiatives at the global level, and many more at regional, national, and sometimes local levels. In such a complex landscape, it can be unclear how different elements relate to each other. Based on a high-level review of global and European-level elements, we present a map of the biodiversity informatics landscape. This is a first attempt at identifying key datasets/databases and data services, and mapping them in a way that can be used to identify the links, gaps and redundancies in the landscape. While the map is predominantly focused on elements with a global scope, the sub-global focus at the European-level was incorporated in the map in order to demonstrate how a regional network such as the European Biodiversity Observation Network (EU BON) can usefully contribute to connecting some of the nodes within the landscape. We identify 74 elements, and find that the informatics landscape is complex in terms of the characteristics and diversity of these elements, and that there is high variability in their level of connectedness. Overall, the landscape is highly connected, with one element boasting 28 connections. The average "degrees of separation" between elements is low, and the landscape is deemed relatively robust to failures since there is no single point that information flows through. Examples of possible effort duplication are presented, and the inclusion of five policy-level elements in the map helps illustrate how informatics products can contribute to global processes that define and direct political targets. Beyond simply describing the existing landscape, this map will support a better understanding of the landscape's current structure and functioning, enabling responsible institutions to establish or strengthen collaborations, work towards avoiding effort duplication, and facilitate access to the biodiversity data, information and knowledge required to support effective decision-making, in the context of comparatively limited funding for biodiversity knowledge and conservation. To support this, we provide the input matrix and code that created this map as supplementary materials, so that readers can more closely examine the links in the landscape, and edit the map to suit their own purposes.
Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we assess the challenges of a 'Big Data' approach to building global EBV data products across taxa and spatiotemporal scales, focusing on species distribution and abundance. The majority of currently available data on species distributions derives from incidentally reported observations or from surveys where presence-only or presence–absence data are sampled repeatedly with standardized protocols. Most abundance data come from opportunistic population counts or from population time series using standardized protocols (e.g. repeated surveys of the same population from single or multiple sites). Enormous complexity exists in integrating these heterogeneous, multi-source data sets across space, time, taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents, harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models for spatial inter- or extrapolation, and quantifying sources of uncertainty and errors in data and models. To support the development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), we identify 11 key workflow steps that will operationalize the process of building EBV data products within and across research infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification and aggregation of various raw data sources, data quality control, taxonomic name matching and statistical modelling of integrated data. We illustrate these steps with concrete examples from existing citizen science and professional monitoring projects, including eBird, the Tropical Ecology Assessment and Monitoring network, the Living Planet Index and the Baltic Sea zooplankton monitoring. The identified workflow steps are applicable to both terrestrial and aquatic systems and a broad range of spatial, temporal and taxonomic scales. They depend on clear, findable and accessible metadata, and we provide an overview of current data and metadata standards. Several challenges remain to be solved for building global EBV data products: (i) developing tools and models for combining heterogeneous, multi-source data sets and filling data gaps in geographic, temporal and taxonomic coverage, (ii) integrating emerging methods and technologies for data collection such as citizen science, sensor networks, DNA-based techniques and satellite remote sensing, (iii) solving major technical issues related to data product structure, data storage, execution of workflows and the production process/cycle as well as approaching technical interoperability among research infrastructures, (iv) allowing semantic interoperability by developing and adopting standards and tools for capturing consistent data and metadata, and (v) ensuring legal interoperability by endorsing open data or data that are free from restrictions on use, modification and sharing. Addressing these challenges is critical for biodiversity research and for assessing progress towards conservation policy targets and sustainable development goals. ; This paper emerged from the first two workshops of the Horizon 2020 project GLOBIS‐B (GLOBal Infrastructures for Supporting Biodiversity research; http://www.globis‐b.eu/). Financial support came from the European Commission (grant 654003). C. A. additionally received funding from the LifeWatchGreece infrastructure (MIS 384676), funded by the Greek Government under the General Secretariat of Research and Technology (GSRT), ESFRI Projects and National Strategic Reference Framework (NSRF). M. O. was supported by the Swedish LifeWatch project funded by the Swedish Research Council (Grant no. 829‐2009‐6278), and J.E. by the Australian Research Council (grant FT0991640).
This Editorial presents the focus, scope and policies of the inaugural issue of Nature Conservation, a new open access, peer-reviewed journal bridging natural sciences, social sciences and hands-on applications in conservation management. The journal covers all aspects of nature conservation and aims particularly at facilitating better interaction between scientists and practitioners. The journal will impose no restrictions on manuscript size or the use of colour. We will use an XML-based editorial workflow and several cutting-edge innovations in publishing and information dissemination. These include semantic mark-up of, and enhancements to published text, data, and extensive cross-linking within the journal and to external sources. We believe the journal will make an important contribution to better linking science and practice, offers rapid, peer-reviewed and flexible publication for authors and unrestricted access to content. ; The journal Nature Conservation was established within the framework of the European Union's Framework Program 7 large-integrated project SCALES: Securing the Conservation of biodiversity across Administrative Levels and spatial, temporal, and Ecological Scales, www.scales-project.net (grant 226852; Henle et al. 2010).
Although satellite‐based variables have for long been expected to be key components to a unified and global biodiversity monitoring strategy, a definitive and agreed list of these variables still remains elusive. The growth of interest in biodiversity variables observable from space has been partly underpinned by the development of the essential biodiversity variable (EBV) framework by the Group on Earth Observations – Biodiversity Observation Network, which itself was guided by the process of identifying essential climate variables. This contribution aims to advance the development of a global biodiversity monitoring strategy by updating the previously published definition of EBV, providing a definition of satellite remote sensing (SRS) EBVs and introducing a set of principles that are believed to be necessary if ecologists and space agencies are to agree on a list of EBVs that can be routinely monitored from space. Progress toward the identification of SRS‐EBVs will require a clear understanding of what makes a biodiversity variable essential, as well as agreement on who the users of the SRS‐EBVs are. Technological and algorithmic developments are rapidly expanding the set of opportunities for SRS in monitoring biodiversity, and so the list of SRS‐EBVs is likely to evolve over time. This means that a clear and common platform for data providers, ecologists, environmental managers, policy makers and remote sensing experts to interact and share ideas needs to be identified to support long‐term coordinated actions. ; DSS, RS, DR and JP were financed by the EU BON project that is a Seventh Framework Programme funded by the European Union under Contract No. 308454. ; Peer reviewed