Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers
6157 6162 20 6 ; S ; This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.20.006157. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law We propose and experimentally demonstrate new architectures to realize multi-tap microwave photonic filters, based on the generation of a single or multiple dynamic Brillouin gratings in polarization maintaining fibers. The spectral range and selectivity of the proposed periodic filters is extensively tunable, simply by reconfiguring the positions and the number of dynamic gratings along the fiber respectively. In this paper, we present a complete analysis of three different configurations comprising a microwave photonic filter implementation: a simple notch-type Mach-Zehnder approach with a single movable dynamic grating, a multi-tap performance based on multiple dynamic gratings and finally a stationary grating configuration based on the phase modulation of two counter-propagating optical waves by a common pseudo-random bit sequence (PRBS). The authors wish to acknowledge the financial support of the European Community's Seventh Framework Programme (FP 7) project GOSPEL; the GVA PROMETEO 2008/092, Infraestructura FEDER UPVOV08-3E-008, the Plan Nacional I + D TEC2011-29120-C05-05, the Swiss National Science Foundation through project 200021-134546 and the EPFL Space Center, the Israeli Science Foundation (ISF), and the KAMIN program of the Chief Scientist Office, Israel Ministry of Industry, Trade and Labor. Sancho Durá, J.; Sales Maicas, S.; Primerov, N.; Chin, S.; Antman, Y.; Zadok, A.; Thevenaz, L. (2012). Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers. Optics Express. 20(6):6157-6162. https://doi.org/10.1364/OE.20.006157 Seeds, A. J. (2002). Microwave ...