Developing biodiversity indicators on a stakeholders' opinions basis: the gypsum industry Key Performance Indicators framework
In: Environmental science and pollution research: ESPR, Band 23, Heft 14, S. 13661-13671
ISSN: 1614-7499
8 Ergebnisse
Sortierung:
In: Environmental science and pollution research: ESPR, Band 23, Heft 14, S. 13661-13671
ISSN: 1614-7499
In: Environmental science and pollution research: ESPR, Band 23, Heft 14, S. 13681-13692
ISSN: 1614-7499
In: Environmental science and pollution research: ESPR, Band 23, Heft 14, S. 13693-13705
ISSN: 1614-7499
International audience ; Chemical soil factors play an important role in generating and maintaining plant diversity .Naturally metal-enriched habitats support highly distinctive plant communities consisting of many rare and endemic species. Species of these plant communities possess remarkable physiological adaptations and are now being considered key elements in the implementation of green technologies aimed at phytoremediation of contaminated soils and post-mined soils. Several studies have emphasised that industrial mineral extraction results in serious damage to ecosystems and serious threats to human health and leads to the extinction of metallophyte species. In the southeastern Democratic Republic of the Congo (DRC), mining activities represent a threat to the long-term persistence of communities located on metalliferous copper and cobalt outcrops and their associated endemic metallophytes, which are currently considered some of the most critically endangered plants in the world.Scope: Plant diversity conservation of metal-rich soils must assess soil-plant relationships at different scales (ecosystems, communities, and populations) to define in-situ and ex-situ conservation and restoration projects. This paper proposes a review of soil-plant relationships involved in plant diversity and endemism and their implications for biodiversity conservation and restoration.
BASE
International audience ; Chemical soil factors play an important role in generating and maintaining plant diversity .Naturally metal-enriched habitats support highly distinctive plant communities consisting of many rare and endemic species. Species of these plant communities possess remarkable physiological adaptations and are now being considered key elements in the implementation of green technologies aimed at phytoremediation of contaminated soils and post-mined soils. Several studies have emphasised that industrial mineral extraction results in serious damage to ecosystems and serious threats to human health and leads to the extinction of metallophyte species. In the southeastern Democratic Republic of the Congo (DRC), mining activities represent a threat to the long-term persistence of communities located on metalliferous copper and cobalt outcrops and their associated endemic metallophytes, which are currently considered some of the most critically endangered plants in the world.Scope: Plant diversity conservation of metal-rich soils must assess soil-plant relationships at different scales (ecosystems, communities, and populations) to define in-situ and ex-situ conservation and restoration projects. This paper proposes a review of soil-plant relationships involved in plant diversity and endemism and their implications for biodiversity conservation and restoration.
BASE
International audience ; Chemical soil factors play an important role in generating and maintaining plant diversity .Naturally metal-enriched habitats support highly distinctive plant communities consisting of many rare and endemic species. Species of these plant communities possess remarkable physiological adaptations and are now being considered key elements in the implementation of green technologies aimed at phytoremediation of contaminated soils and post-mined soils. Several studies have emphasised that industrial mineral extraction results in serious damage to ecosystems and serious threats to human health and leads to the extinction of metallophyte species. In the southeastern Democratic Republic of the Congo (DRC), mining activities represent a threat to the long-term persistence of communities located on metalliferous copper and cobalt outcrops and their associated endemic metallophytes, which are currently considered some of the most critically endangered plants in the world.Scope: Plant diversity conservation of metal-rich soils must assess soil-plant relationships at different scales (ecosystems, communities, and populations) to define in-situ and ex-situ conservation and restoration projects. This paper proposes a review of soil-plant relationships involved in plant diversity and endemism and their implications for biodiversity conservation and restoration.
BASE
International audience ; Chemical soil factors play an important role in generating and maintaining plant diversity .Naturally metal-enriched habitats support highly distinctive plant communities consisting of many rare and endemic species. Species of these plant communities possess remarkable physiological adaptations and are now being considered key elements in the implementation of green technologies aimed at phytoremediation of contaminated soils and post-mined soils. Several studies have emphasised that industrial mineral extraction results in serious damage to ecosystems and serious threats to human health and leads to the extinction of metallophyte species. In the southeastern Democratic Republic of the Congo (DRC), mining activities represent a threat to the long-term persistence of communities located on metalliferous copper and cobalt outcrops and their associated endemic metallophytes, which are currently considered some of the most critically endangered plants in the world.Scope: Plant diversity conservation of metal-rich soils must assess soil-plant relationships at different scales (ecosystems, communities, and populations) to define in-situ and ex-situ conservation and restoration projects. This paper proposes a review of soil-plant relationships involved in plant diversity and endemism and their implications for biodiversity conservation and restoration.
BASE
Background: Chemical soil factors play an important role in generating and maintaining plant diversity. Naturally metal-enriched habitats support highly distinctive plant communities consisting of many rare and endemic species. Species of these plant communities possess remarkable physiological adaptations and are now being considered key elements in the implementation of green technologies aimed at phytoremediation of contaminated soils and post-mined soils. Several studies have emphasised that industrial mineral extraction results in serious damage to ecosystems and serious threats to human health and leads to the extinction of metallophyte species. In the southeastern Democratic Republic of the Congo (DRC), mining activities represent a threat to the long-term persistence of communities located on metalliferous copper and cobalt outcrops and their associated endemic metallophytes, which are currently considered some of the most critically endangered plants in the world. Scope: Plant diversity conservation of metal-rich soils must assess soil-plant relationships at different scales (ecosystems, communities, and populations) to define in-situ and ex-situ conservation and restoration projects. This paper proposes a review of soil-plant relationships involved in plant diversity and endemism and their implications for biodiversity conservation and restoration. ; SCOPUS: ar.j ; info:eu-repo/semantics/published
BASE