14 páginas, 7 figuras, 1 tabla, 23 referencias. ; [EN]: The importance of stone colonisation by microorganisms has led to an extensive literature on mechanisms and rates of physicochemical degradation of stone surface, both in laboratory and field contexts. Biological colonisation of a stone surface depends on intrinsic stone parameters like mineral composition, texture, porosity, and permeability, as well as on environmental parameters. In the present study, quantification of stone surface roughness and its relationship to epilithic colonisation was demonstrated for three types of limestones throughout non-destructive techniques, namely optical surface roughness instrument and digital image analysis. According to the roughness average (Ra) and mean roughness depth (Rz) determined for Ançã limestone, Lioz limestone and Lecce stone, it can be concluded that great surface roughness stones render them prone to microbial colonisation. ; [ES]: La colonización de la piedra por microorganismos ha generado una extensa literatura sobre los mecanismos y tasas de degradación fisicoquímica de las superficies pétreas, tanto en laboratorio como en estudios de campo. La colonización biológica de piedra de construcción depende de parámetros intrínsecos como son su composición mineral, textura, porosidad y permeabilidad, así como de parámetros ambientales. Este estudio demuestra la relación entre la rugosidad superficial de la piedra y la colonización epilítica, cuantificada en tres tipos de caliza mediante técnicas no destructivas: medida de la rugosidad superficial usando un perfilómetro óptico y análisis digital de imágenes. De acuerdo con la rugosidad media aritmética (Ra) y la amplitud media de rugosidad (Rz), determinadas para la caliza de Ançã, la caliza de Lioz y la piedra de Lecce, puede concluirse que las piedras con alta rugosidad superficial son más propensas a la colonización microbiana. ; Este estudio ha sido financiado por el Ministério da Ciência, Tecnologia e Ensino Superior, Portugal, con una beca postdoctoral (SFRH/BPD/63836/2009) y parcialmente financiado por CEPGIST-FCT subproyecto DECASTONE. Este trabajo recibió también financiación del Programa de Financiamento Plurianual de Unidades de Investigação da FCT, financiado por la Unión Europea, FEDER, y fondos nacionales de la República Portuguesa. Este es un trabajo del proyecto CONSOLIDER CSD2007- 00058. This study has been financed by the Ministério da Ciência, Tecnologia e Ensino Superior, Portugal, with a postdoctoral grant (SFRH/BPD/63836/2009) and partially financed by CEPGIST-FCT subproject DECASTONE. This work also received support from Programa de Financiamento Plurianual de Unidades de Investigação da FCT, financed by European Union, FEDER, and national budget of the Portuguese Republic. This is also a paper from the project CONSOLIDER CSD2007-00058. ; Peer reviewed
18 pág.- 3 figuras.- 3 tablas.- 96 referencias ; Nerja Cave, Southern Spain, was revealed as an important biodiversity reservoir from which several novel species of Aspergillus were described. We carried out an aerobiological study in Nerja Cave to assess the origin of airborne fungi. This study quantified the fungi present in the air of ten representative halls covering the three sectors comprising the cave: Touristic Galleries, High Galleries, and New Galleries. Microclimatological monitoring allowed us to understand the dynamic of airborne fungi in two seasons of the year (winter and summer), corresponding to the strongest and the lowest cave ventilation, and to validate the influence that the transport of airborne fungi from outside may have on the cave itself. The data show that cold air enters in winter, as confirmed by the abundant presence of Aspergillus and Penicillium spores inside and outside the cave. In summer, the abundance of some fungi in the air of Nerja Cave, which are not detected outside, indicates a stagnation or low ventilation, and therefore, the concentration of fungal spores is maxima. The high occurrence of Cladosporium outside the cave and the scarce abundance inside support the cave stagnation in this season. ; This research was funded by Nerja Cave Foundation. This work is part of an Interdisciplinary Research Project for the conservation of Nerja Cave, authorized by the Ministry of Culture of the Andalusian Government. ; Peer reviewed
7 páginas.-- 4 figuras.-- 3 tablas.-- 30 referencias.-- Datos suplentarios en archivo dox disponibles en http://dx.doi.org/10.1016/j.jhazmat.2014.07.006 (3 páginas.-- 1 tabla) ; Clay–polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay–polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay–polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay–polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay–polymer composite yielded 100% removal of bacteria after the passage of 3 L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5 L. Regeneration of clay–polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted o optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods. ; This research was funded by the grant NANOWAT (ref. I-B/2.1/049) within the ENPI-CBCMED programme of the European Union. The polymers were kindly supplied by Penford Products Co. (CO, USA) ; Peer reviewed
Subterranean ecosystems play an active role in the global carbon cycle, yet only a few studies using indirect methods have focused on the role of the cave microbiota in this critical cycle. Here we present pioneering research based on in situ real-time monitoring of CO2 and CH4 diffusive fluxes and concurrent δ13C geochemical tracing in caves, combined with 16S microbiome analysis. Our findings show that cave sediments are promoting continuous CH4 consumption from cave atmosphere, resulting in a significant removal of 65% to 90%. This research reveals the most effective taxa and metabolic pathways in consumption and uptake of greenhouse gases. Methanotrophic bacteria were the most effective group involved in CH4 consumption, namely within the families Methylomonaceae, Methylomirabilaceae and Methylacidiphilaceae. In addition, Crossiella and Nitrosococcaceae wb1-P19 could be one of the main responsible of CO2 uptake, which occurs via the Calvin-Benson-Bassham cycle and reversible hydration of CO2. Thus, syntrophic relationships exist between Crossiella and nitrifying bacteria that capture CO2, consume inorganic N produced by heterotrophic ammonification in the surface of sediments, and induce moonmilk formation. Moonmilk is found as the most evolved phase of the microbial processes in cave sediments that fixes CO2 as calcite and intensifies CH4 oxidation. From an ecological perspective, cave sediments act qualitatively as soils, providing fundamental ecosystem services (e.g. nutrient cycling and carbon sequestration) with direct influence on greenhouse gas emissions. ; This work was supported by the Spanish Ministry of Science, Innovation through project PID2019-110603RB-I00, MCIN/AEI/FEDER UE/10.13039/501100011033 and with collaboration of projects RTI2018-099052-B-I00 and PID2020-114978GB-I00. This research has also received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 844535 — MIFLUKE. ; Peer reviewed
In recent years, methane (CH4) has received increasing scientific attention because it is the most abundant non-CO2 atmospheric greenhouse gas (GHG) and controls numerous chemical reactions in the troposphere and stratosphere. However, there is much that is unknown about CH4 sources and sinks and their evolution over time. Here we show that near-surface cavities in the uppermost vadose zone are now actively removing atmospheric CH4. Through seasonal geochemical tracing of air in the atmosphere, soil and underground at diverse geographic and climatic locations in Spain, our results show that complete consumption of CH4 is favoured in the subsurface atmosphere under near vapour-saturation conditions and without significant intervention of methanotrophic bacteria. Overall, our results indicate that subterranean atmospheres may be acting as sinks for atmospheric CH4 on a daily scale. However, this terrestrial sink has not yet been considered in CH4 budget balances. ; This research was funded by the Spanish Ministry of Economy and Competitiveness project CGL2013-43324-R and its programme Torres Quevedo (PTQ 13-06296 and PTQ 12-05601). Funding was also provided by the People Programme (Marie Curie Actions – Intra-European Fellowships, call 2013) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n°624204 and by CSIC funds (PIE project 201230E125).
Este trabajo se ha llevado a cabo en el marco del proyecto FOMIX CONACYT-Gobierno del Estado de Campeche: "Influencia del entorno urbano en los procesos de degradación de edificios militares y religiosos de la época colonial en la ciudad de Campeche", clave: CAMP2005-C01-028.
Subterranean ecosystems play an active role in the global carbon cycle, yet only a few studies using indirect methods have focused on the role of the cave microbiota in this critical cycle. Here we present pioneering research based on in situ real-time monitoring of CO2 and CH4 diffusive fluxes and concurrent δ13C geochemical tracing in caves, combined with 16S microbiome analysis. Our findings show that cave sediments are promoting continuous CH4 consumption from cave atmosphere, resulting in a significant removal of 65% to 90%. This research reveals the most effective taxa and metabolic pathways in consumption and uptake of greenhouse gases. Methanotrophic bacteria were the most effective group involved in CH4 consumption, namely within the families Methylomonaceae, Methylomirabilaceae and Methylacidiphilaceae. In addition, Crossiella and Nitrosococcaceae wb1-P19 could be one of the main responsible of CO2 uptake, which occurs via the Calvin-Benson-Bassham cycle and reversible hydration of CO2. Thus, syntrophic relationships exist between Crossiella and nitrifying bacteria that capture CO2, consume inorganic N produced by heterotrophic ammonification in the surface of sediments, and induce moonmilk formation. Moonmilk is found as the most evolved phase of the microbial processes in cave sediments that fixes CO2 as calcite and intensifies CH4 oxidation. From an ecological perspective, cave sediments act qualitatively as soils, providing fundamental ecosystem services (e.g. nutrient cycling and carbon sequestration) with direct influence on greenhouse gas emissions. ; This work was supported by the Spanish Ministry of Science, Innovation through project PID2019-110603RB-I00, MCIN/AEI/FEDER, UE/10.13039/501100011033 and with collaboration of projects RTI2018-099052-B-I00 and PID2020-114978GB-I00. This research has also received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 844535 — MIFLUKE.
16 páginas.-- 8 figuras.-- 2 tablas.-- 66 referencias.-- Material suplementario http://dx.doi.org/10.3389/fmicb.2015.01342 ; Volcanic caves are filled with colorful microbial mats on the walls and ceilings. These volcanic caves are found worldwide, and studies are finding vast bacteria diversity within these caves. One group of bacteria that can be abundant in volcanic caves, as well as other caves, is Actinobacteria. As Actinobacteria are valued for their ability to produce a variety of secondary metabolites, rare and novel Actinobacteria are being sought in underexplored environments. The abundance of novel Actinobacteria in volcanic caves makes this environment an excellent location to study these bacteria. Scanning electron microscopy (SEM) from several volcanic caves worldwide revealed diversity in the morphologies present. Spores, coccoid, and filamentous cells, many with hair-like or knobby extensions, were some of the microbial structures observed within the microbial mat samples. In addition, the SEM study pointed out that these features figure prominently in both constructive and destructive mineral processes. To further investigate this diversity, we conducted both Sanger sequencing and 454 pyrosequencing of the Actinobacteria in volcanic caves from four locations, two islands in the Azores, Portugal, and Hawai'i and New Mexico, USA. This comparison represents one of the largest sequencing efforts of Actinobacteria in volcanic caves to date. The diversity was shown to be dominated by Actinomycetales, but also included several newly described orders, such as Euzebyales, and Gaiellales. Sixty-two percent of the clones from the four locations shared less than 97% similarity to known sequences, and nearly 71% of the clones were singletons, supporting the commonly held belief that volcanic caves are an untapped resource for novel and rare Actinobacteria. The amplicon libraries depicted a wider view of the microbial diversity in Azorean volcanic caves revealing three additional orders, Rubrobacterales, Solirubrobacterales, and Coriobacteriales. Studies of microbial ecology in volcanic caves are still very limited. To rectify this deficiency, the results from our study help fill in the gaps in our knowledge of actinobacterial diversity and their potential roles in the volcanic cave ecosystems. ; The authors acknowledge the Spanish Ministry of Economy and Competitiveness (project CGL2013-41674-P) and FEDER Funds for financial support. AM acknowledges the support from the Marie Curie Intra-European Fellowship of the European Commission's 7th Framework Programme (PIEF-GA-2012-328689). CR was funded by the Regional Fund for Science and Technology and Pro-Emprego program of the Regional Government of the Azores, Portugal [M3.1.7/F/013/2011, M3.1.7/F/030/2011]. Her work was partly supported by National funds from the Foundation for Science and Technology of the Portuguese Government, [Understanding Underground Biodiversity: Studies in Azorean Lava Tubes (reference PTDC/AMB/70801/2006]. The authors would like to thank the TRU Innovation in Research Grant, TRU UREAP Fund, Western Economic Diversification Canada Fund, Kent Watson (assisted with the Helmcken Falls Cave sample collection), Derrick Horne (UBC BioImaging Facility for the SEM work). We acknowledged the Canadian Ministry of Forests, Lands, and Natural Resource Operations for Park Use Permit#102172. This work was also supported by the Cave Conservancy of the Virginias, the Graduate Research Allocation Committee at UNM Biology, UNM Biology Grove Scholarship, the Student Research Allocation Committee at UNM, the National Speleological Society, the New Mexico Space Grant Consortium, the New Mexico Alliance for Minority Participation Program, the New Mexico Geological Society, and Kenneth Ingham Consulting. We acknowledge support from the UNM Molecular Biology Facility, which is supported by NIH grant number P20GM103452. The authors also wish to thank Fernando Pereira, Ana Rita Varela, Pedro Correia, Berta Borges, and Guida Pires for help during field and lab work in the Azores. The authors gratefully acknowledge the photographic contributions of Kenneth Ingham and Pedro Cardoso and Michael Spilde (SEM images). The authors would like to thank Dr. Steven Van Wagoner (TRU) and Drs. Julian Davies and Vivian Miao (UBC) for their invaluable comments in manuscript preparation. We gratefully acknowledge the help and collecting permits granted by the staff of El Malpais National Monument and Hawai'i Volcanoes National Park (USA). ; Peer reviewed