Herbivorous snails can increase water clarity by stimulating growth of benthic algae
In: Environmental science and pollution research: ESPR, Band 24, Heft 31, S. 24698-24707
ISSN: 1614-7499
5 Ergebnisse
Sortierung:
In: Environmental science and pollution research: ESPR, Band 24, Heft 31, S. 24698-24707
ISSN: 1614-7499
In: JEMA-D-22-03440
SSRN
Dreissenid mussels (including the zebra mussel Dreissena polymorpha and the quagga mussel D. rostriformis) are among the world's most notorious invasive species, with large and widespread ecological and economic effects. However, their long-term population dynamics are poorly known, even though these dynamics are critical to determining impacts and effective management. We gathered and analyzed 67 long-term (>10 yr) data sets on dreissenid populations from lakes and rivers across Europe and North America. We addressed five questions: (1) How do Dreissena populations change through time? (2) Specifi- cally, do Dreissena populations decline substantially after an initial outbreak phase? (3) Do different measures of population performance (biomass or density of settled animals, veliger density, recruitment of young) follow the same patterns through time? (4) How do the numbers or biomass of zebra mussels or of both species combined change after the quagga mussel arrives? (5) How does body size change over time? We also considered whether current data on long-term dynamics of Dreissena populations are adequate for science and management. Individual Dreissena populations showed a wide range of temporal dynamics, but we could detect only two general patterns that applied across many populations: (1) Populations of both species increased rapidly in the first 1-2 yr after appearance, and (2) quagga mussels appeared later than zebra mussels and usually quickly caused large dedines in zebra mussel populations. We found little evidence that combined Dreissena populations declined over the long term. Different measures of population performance were not congruent; the temporal dynamics of one life stage or population attribute cannot generally be accurately inferred from the dynamics of another. We found no consistent patterns in the long-term dynamics of body size. The long-term dynamics of Dreissena populations probably are driven by the ecological characteristics (e.g., predation, nutrient inputs, water temperature) and their temporal changes at individual sites rather than following a generalized time course that applies across many sites. Existing long-term data sets on dreissenid populations, although dearly valuable, are inadequate to meet research and management needs. Data sets could be improved by standardizing sampling designs and methods, routinely collecting more variables, and increasing support. ; Deutsche Forschungsgemeinschaft (DFG) [JE 288/8-1]; G.E. Hutchinson Chair at the Cary Institute of Ecosystem Studies (DLS); NSF-LTREB grants [DEB-1556246]; NSF-OPUS grant [DEB-1456532]; DFG [JE 288/9-1, JE 288/9-2]; USGS [G14AC000263]; US EPA [GL00E01184]; Cornell Agricultural Experiment Station [NYC-0226747]; New York State Department of Environmental Conservation grants; NSF [1517823]; Belarusian Republican Foundation for Fundamental Research; Mercator Fellowship; [TaMOP-4.2.2.A-11/1/KONV-2012-0038]; [GINOP-2.3.2-15-2016-00019] ; This study is a contribution of the Invasion Dynamics Network (InDyNet), funded by the Deutsche Forschungsgemeinschaft (DFG; JE 288/8-1) including a Mercator Fellowship to DLS. Additional support came from the G.E. Hutchinson Chair at the Cary Institute of Ecosystem Studies (DLS), NSF-LTREB grants (most recently DEB-1556246), and NSF-OPUS grant DEB-1456532 to DLS; DFG projects JE 288/9-1 and JE 288/9-2 to JMJ; TaMOP-4.2.2.A-11/1/KONV-2012-0038 and the GINOP-2.3.2-15-2016-00019 to CSB and LG-T; USGS G14AC000263 and US EPA GL00E01184 to LEB and AYK; Cornell Agricultural Experiment Station NYC-0226747 and New York State Department of Environmental Conservation grants to LGR and ALH, and NSF grant 1517823 (ALH); and the Belarusian Republican Foundation for Fundamental Research to BA and OM. We thank Krzysztof Lewandowski for his help with data from Polish lakes; Mike Davis, the Minnesota Department of Natural Resources, and the United States Army Corps of Engineers for the Lake Pepin data; Kristen Holeck and Ed Mills for help with Oneida Lake data; the Onondaga County Department of Water Environment Protection; Ulrike Scharfenberger for her advice on the statistical analyses; Jaclyn McGuire for helping to gather information for the supplementary materials; Maggie Oudsema; and Juergen Geist, other InDyNet members, and Ladd Johnson, Alex Latzka, and Teresa Newton for helpful comments and suggestions. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
BASE
In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions. ; Main financial support for EMU: European Union's Horizon 2020 research and innovation programme Under the Marie Skłodowska-Curie Action, Innovative Training Networks, European Joint Doctorates. ; Project name, acronym and grant number: Management of climatic extreme events in lakes and reservoirs for the protection of ecosystem services, MANTEL, grant agreement No 722518. ; Publication date and, if applicable, length of embargo period: 22.04.2020, no embargo period. ; Main financial support for EMU: European Union's Horizon 2020 research and innovation programme Under the Marie Skłodowska-Curie Action, Innovative Training Networks, European Joint Doctorates
BASE
European Research Council and EU, Grant/Award Number: AdG‐250189, PoC‐727440 and ERC‐SyG‐2013‐610028; Natural Environmental Research Council, Grant/Award Number: NE/L002531/1; National Science Foundation, Grant/Award Number: DEB‐1237733, DEB‐1456729, 9714103, 0632263, 0856516, 1432277, DEB‐9705814, BSR‐8811902, DEB 9411973, DEB 0080538, DEB 0218039, DEB 0620910, DEB 0963447, DEB‐1546686, DEB‐129764, OCE 95‐21184, OCE‐ 0099226, OCE 03‐52343, OCE‐0623874, OCE‐1031061, OCE‐1336206 and DEB‐1354563; National Science Foundation (LTER) , Grant/Award Number: DEB‐1235828, DEB‐1440297, DBI‐0620409, DEB‐9910514, DEB‐1237517, OCE‐0417412, OCE‐1026851, OCE‐1236905, OCE‐1637396, DEB 1440409, DEB‐0832652, DEB‐0936498, DEB‐0620652, DEB‐1234162 and DEB‐0823293; Fundação para a Ciência e Tecnologia, Grant/Award Number: POPH/FSE SFRH/BD/90469/2012, SFRH/BD/84030/2012, PTDC/BIA‐BIC/111184/2009; SFRH/BD/80488/2011 and PD/BD/52597/2014; Ciência sem Fronteiras/CAPES, Grant/Award Number: 1091/13‐1; Instituto Milenio de Oceanografía, Grant/Award Number: IC120019; ARC Centre of Excellence, Grant/Award Number: CE0561432; NSERC Canada; CONICYT/FONDECYT, Grant/Award Number: 1160026, ICM PO5‐002, CONICYT/FONDECYT, 11110351, 1151094, 1070808 and 1130511; RSF, Grant/Award Number: 14‐50‐00029; Gordon and Betty Moore Foundation, Grant/Award Number: GBMF4563; Catalan Government; Marie Curie Individual Fellowship, Grant/Award Number: QLK5‐CT2002‐51518 and MERG‐CT‐2004‐022065; CNPq, Grant/Award Number: 306170/2015‐9, 475434/2010‐2, 403809/2012‐6 and 561897/2010; FAPESP (São Paulo Research Foundation), Grant/Award Number: 2015/10714‐6, 2015/06743‐0, 2008/10049‐9, 2013/50714‐0 and 1999/09635‐0 e 2013/50718‐5; EU CLIMOOR, Grant/Award Number: ENV4‐CT97‐0694; VULCAN, Grant/Award Number: EVK2‐CT‐2000‐00094; Spanish, Grant/Award Number: REN2000‐0278/CCI, REN2001‐003/GLO and CGL2016‐79835‐P; Catalan, Grant/Award Number: AGAUR SGR‐2014‐453 and SGR‐2017‐1005; DFG, Grant/Award Number: 120/10‐2; Polar Continental Shelf Program; CENPES – PETROBRAS; FAPERJ, Grant/Award Number: E‐26/110.114/2013; German Academic Exchange Service; sDiv; iDiv; New Zealand Department of Conservation; Wellcome Trust, Grant/Award Number: 105621/Z/14/Z; Smithsonian Atherton Seidell Fund; Botanic Gardens and Parks Authority; Research Council of Norway; Conselleria de Innovació, Hisenda i Economia; Yukon Government Herschel Island‐Qikiqtaruk Territorial Park; UK Natural Environment Research Council ShrubTundra Grant, Grant/Award Number: NE/M016323/1; IPY; Memorial University; ArcticNet. DOI:10.13039/50110000027. Netherlands Organization for Scientific Research in the Tropics NWO, grant W84‐194. Ciências sem Fronteiras and Coordenação de Pessoal de Nível Superior (CAPES, Brazil), Grant/Award Number: 1091/13‐1. National Science foundation (LTER), Award Number: OCE‐9982105, OCE‐0620276, OCE‐1232779. FCT ‐ SFRH / BPD / 82259 / 2011. U.S. Fish and Wildlife Service/State Wildlife federal grant number T‐15. Australian Research Council Centre of Excellence for Coral Reef Studies (CE140100020). Australian Research Council Future Fellowship FT110100609. M.B., A.J., K.P., J.S. received financial support from internal funds of University of Lódź. NSF DEB 1353139. Catalan Government fellowships (DURSI): 1998FI‐00596, 2001BEAI200208, MECD Post‐doctoral fellowship EX2002‐0022. National Science Foundation Award OPP‐1440435. FONDECYT 1141037 and FONDAP 15150003 (IDEAL). CNPq Grant 306595‐2014‐1 ; Peer reviewed ; Publisher PDF
BASE