Influence Of Bottom Topography On An Upwelling Current: Generation Of Long Trapped Filaments
ISI Document Delivery No.: 685VR Times Cited: 5 Cited Reference Count: 43 Cited References: Alvarez-Salgado XA, 2001, PROG OCEANOGR, V51, P321, DOI 10.1016/S0079-6611(01)00073-8 Alvarez-Salgado XA, 2007, LIMNOL OCEANOGR, V52, P1287 BARTH JA, 1989, J GEOPHYS RES-OCEANS, V94, P10857, DOI 10.1029/JC094iC08p10857 BARTH JA, 1989, J GEOPHYS RES-OCEANS, V94, P10844, DOI 10.1029/JC094iC08p10844 Barton ED, 2004, PROG OCEANOGR, V62, P71, DOI 10.1016/j.pocean.2004.07.003 Barton ED, 2001, PROG OCEANOGR, V51, P249, DOI 10.1016/S0079-6611(01)00069-6 Batteen ML, 1997, J GEOPHYS RES-OCEANS, V102, P985, DOI 10.1029/96JC02803 Batteen ML, 2007, OCEAN MODEL, V18, P1, DOI 10.1016/j.ocemod.2007.02.006 BLECK R, 1990, J GEOPHYS RES-OCEANS, V95, P3273, DOI 10.1029/JC095iC03p03273 BLECK R, 1992, J PHYS OCEANOGR, V22, P1486, DOI 10.1175/1520-0485(1992)0222.0.CO;2 BLECK R, 1986, J GEOPHYS RES-OCEANS, V91, P7611, DOI 10.1029/JC091iC06p07611 BRETHERT.FP, 1966, Q J ROY METEOR SOC, V92, P325, DOI 10.1002/qj.49709239302 BRINK KH, 1983, PROG OCEANOGR, V12, P223, DOI 10.1016/0079-6611(83)90009-5 Capet XJ, 2004, J PHYS OCEANOGR, V34, P1400, DOI 10.1175/1520-0485(2004)0342.0.CO;2 CHARNEY JG, 1962, J ATMOS SCI, V19, P159, DOI 10.1175/1520-0469(1962)0192.0.CO;2 DEWEY RK, 1991, J GEOPHYS RES-OCEANS, V96, P14885, DOI 10.1029/91JC00944 FLAMENT P, 1985, J GEOPHYS RES-OCEANS, V90, P1765, DOI 10.1029/JC090iC06p11765 HAIDVOGEL DB, 1991, J GEOPHYS RES-OCEANS, V96, P15017, DOI 10.1029/91JC00943 HAYNES R, 1993, J GEOPHYS RES-OCEANS, V98, P22681, DOI 10.1029/93JC02016 Herbette S, 2005, J PHYS OCEANOGR, V35, P2012, DOI 10.1175/JPO2809.1 Herbette S, 2003, J PHYS OCEANOGR, V33, P1664, DOI 10.1175/2382.1 HOSKINS BJ, 1985, Q J ROY METEOR SOC, V111, P877, DOI 10.1256/smsqj.47001 IKEDA M, 1981, J PHYS OCEANOGR, V11, P526, DOI 10.1175/1520-0485(1981)0112.0.CO;2 Ikeda M., 1989, Journal of Physical Oceanography, V19, DOI 10.1175/1520-0485(1989)0192.0.CO;2 KILLWORTH PD, 1980, DYNAM ATMOS OCEANS, V4, P143, DOI 10.1016/0377-0265(80)90013-5 Kostianoy AG, 1996, J MARINE SYST, V7, P349, DOI 10.1016/0924-7963(95)00029-1 Marchesiello P, 2003, J PHYS OCEANOGR, V33, P753, DOI 10.1175/1520-0485(2003)332.0.CO;2 MCINTYRE ME, 1990, J FLUID MECH, V212, P403, DOI 10.1017/S0022112090002038 MCWILLIAMS JC, 1980, J ATMOS SCI, V37, P1657, DOI 10.1175/1520-0469(1980)0372.0.CO;2 Morel Y, 2001, J PHYS OCEANOGR, V31, P2280, DOI 10.1175/1520-0485(2001)0312.0.CO;2 Morel YG, 2006, J PHYS OCEANOGR, V36, P875, DOI 10.1175/JPO2899.1 Navarro-Perez E, 1998, S AFR J MARINE SCI, V19, P61 Roed LP, 1999, J GEOPHYS RES-OCEANS, V104, P29817, DOI 10.1029/1999JC900175 Rossi V, 2010, OCEAN MODEL, V31, P51, DOI 10.1016/j.ocemod.2009.10.002 Sanchez RF, 2008, J GEOPHYS RES-OCEANS, V113, DOI 10.1029/2007JC004430 Shi XB, 1999, J PHYS OCEANOGR, V29, P948, DOI 10.1175/1520-0485(1999)0292.0.CO;2 Stern ME, 2000, J MAR RES, V58, P269, DOI 10.1357/002224000321511160 Strub T. P., 1991, J GEOPHYS RES, V96, P14 Thomas LN, 2005, J PHYS OCEANOGR, V35, P2457, DOI 10.1175/JPO2830.1 VERRON J, 1985, J FLUID MECH, V154, P231, DOI 10.1017/S0022112085001501 VIERA F, 1994, J PHYS OCEANOGR, V24, P1433, DOI 10.1175/1520-0485(1994)0242.0.CO;2 WASHBURN L, 1988, J PHYS OCEANOGR, V18, P1075, DOI 10.1175/1520-0485(1988)0182.0.CO;2 Winther NG, 2007, J MARINE SYST, V67, P31, DOI 10.1016/j.jmarsys.2006.08.004 Meunier, T. Rossi, V. Morel, Y. Carton, X. DGA [PEA 012401]; Spanish National Government [CTM2007-66408-C02/MAR] Part of this study has been conducted in the frame of the MOUTON project funded by DGA (PEA 012401) and the CAIBEX project (CTM2007-66408-C02/MAR) funded by the Spanish National Government. T.M. thanks Pr E.D. Barton for the useful discussions and the calculation time supplied at IIM-CSIC (Spain). V.R. is supported by a PhD grant from DGA. Satellite images where provided by Joel Sudre at LEGOS. 5 ELSEVIER SCI LTD OXFORD OCEAN MODEL ; We investigate the influence of bottom topography on the formation and trapping of long upwelling filaments using a 2-layer shallow water model on the f-plane. A wind forced along-shore current, associated with coastal upwelling along a vertical wall, encounters a promontory of finite width and length, perpendicular to the coast. In the lower layer, topographic eddies form, which are shown to drive the formation of a filament on the front. Indeed, as the upwelling current and front develop along the coast, the along shore flow crosses the promontory, re-arranging the potential vorticity structure and generating intense vortical structures: water columns with high potential vorticity initially localized upon the promontory are advected into the deep ocean, forming cyclonic eddies, while water columns from the deep ocean with low potential vorticity climb on the topography forming a trapped anticyclonic circulation. These topographic eddies interact with the upper layer upwelling front and form an elongated, trapped and narrow filament. Sensitivity tests are then carried out and it is shown that: baroclinic instability of the front does not play a major role on the formation of long trapped filaments; increasing the duration of the wind forcing increases the upwelling current and limits the offshore growth of the filament; modifying the promontory characteristics (width, length, height and slopes) has strong impact on the filament evolution, sometimes leading to a multipolarisation of the potential vorticity anomaly structure which results in much more complicated patterns in the upper layer (numerous shorter and less coherent filaments). This shows that only specific promontory shapes can lead to the formation of well defined filaments; adding bottom friction introduces a slight generation of potential vorticity in the bottom layer over the promontory, but does not significantly alter significantly the formation of the filament along the outcropped front in the present configuration; modifying the stratification characteristics, in particular the density jump between the layers, has only a weak influence on the dynamics of topographic eddies and on filament formation; the influence of capes is also modest in our simulations, showing that topography plays the major role in the formation of long and trapped upwelling filaments.