Machine Predictions and Human Decisions with Variation in Payoffs and Skills
In: DIW Berlin Discussion Paper No. 1911
9 Ergebnisse
Sortierung:
In: DIW Berlin Discussion Paper No. 1911
SSRN
Working paper
In: CESifo Working Paper No. 8702
SSRN
Working paper
Eine zentrale Strategie, um der Zunahme von Antibiotikaresistenzen entgegenzutreten, ist die Verbesserung der ärztlichen Verschreibungspraxis. Damit sollen Fehlverschreibungen von Antibiotika als eine Hauptursache von Antibiotikaresistenzen vermieden werden. Die zunehmende Verfügbarkeit medizinischer Daten und Methoden des maschinellen Lernens bieten die Chance, schnellere Diagnosen bereitzustellen. In diesem Beitrag wird am Beispiel von Antibiotikaverschreibungen für Harnwegsinfekte in Dänemark dargelegt, wie datenbasierte Vorhersagen die klinische Praxis vor dem Hintergrund von Antibiotikaresistenzen verbessern können. Zu diesem Zweck werden umfassende administrative und medizinische Daten zusammen mit Methoden des maschinellen Lernens und einem ökonomischen Modell verwendet, um Verschreibungsregeln für Antibiotika zu entwickeln. Dabei zeigt sich, dass die Gesamtzahl an Verschreibungen durch die vorgeschlagenen Politikmaßnahmen um 7,42 Prozent verringert werden kann, ohne die Anzahl behandelter bakterieller Infektionen zu verringern. Dies demonstriert das große Potential dieser Methode. In Deutschland kann dieses Potential jedoch erst durch weitere Bemühungen bei der Digitalisierung von Informationen verwirklicht werden. Eine wichtige Rolle spielt die Verknüpfung oft dezentral erhobener und gespeicherter Informationen, die für die IT-Systeme von Arztpraxen und Krankenhäusern verfügbar sein müssen.
BASE
Improving physicians' prescription practices is a primary strategy for countering the rise in resistance to antibiotics. This would prevent physicians from incorrectly prescribing antibiotics, one of the main causes of antibiotic resistance. The increasing availability of medical data and methods of machine learning provide an opportunity to generate instant diagnoses. In the present study, the example of urinary tract infections in Denmark is used to demonstrate how data-based predictions can improve clinical practice in the face of increasing antibiotic resistance. For this purpose, comprehensive administrative and medical data, in combination with machine learning methods and economic modeling, were used to develop rules for prescribing antibiotics. The total number of prescriptions could be reduced by 7.42 percent by applying the recommended policy measures without reducing the number of treated bacterial infections. This demonstrates the great potential of this method. However, in Germany this potential cannot be tapped until more information is digitized. The information that must be supplied to the IT systems in physicians' practices and hospitals is often collected and saved by decentralized institutions; linking it is key.
BASE
Eine zentrale Strategie, um der Zunahme von Antibiotikaresistenzen entgegenzutreten, ist die Verbesserung der ärztlichen Verschreibungspraxis. Damit sollen Fehlverschreibungen von Antibiotika als eine Hauptursache von Antibiotikaresistenzen vermieden werden. Die zunehmende Verfügbarkeit medizinischer Daten und Methoden des maschinellen Lernens bieten die Chance, schnellere Diagnosen bereitzustellen. In diesem Beitrag wird am Beispiel von Antibiotikaverschreibungen für Harnwegsinfekte in Dänemark dargelegt, wie datenbasierte Vorhersagen die klinische Praxis vor dem Hintergrund von Antibiotikaresistenzen verbessern können. Zu diesem Zweck werden umfassende administrative und medizinische Daten zusammen mit Methoden des maschinellen Lernens und einem ökonomischen Modell verwendet, um Verschreibungsregeln für Antibiotika zu entwickeln. Dabei zeigt sich, dass die Gesamtzahl an Verschreibungen durch die vorgeschlagenen Politikmaßnahmen um 7,42 Prozent verringert werden kann, ohne die Anzahl behandelter bakterieller Infektionen zu verringern. Dies demonstriert das große Potential dieser Methode. In Deutschland kann dieses Potential jedoch erst durch weitere Bemühungen bei der Digitalisierung von Informationen verwirklicht werden. Eine wichtige Rolle spielt die Verknüpfung oft dezentral erhobener und gespeicherter Informationen, die für die IT-Systeme von Arztpraxen und Krankenhäusern verfügbar sein müssen.
BASE
In: CESifo Working Paper No. 7654
SSRN
In: DIW Berlin Discussion Paper No. 1803 (2019)
SSRN
Working paper
Personendaten aus der Verwaltung (Administrativdaten) haben sich in den letzten Jahrzehnten als wichtige Basis zur Evaluierung von Politikmaßnahmen erwiesen. Durch maschinelles Lernen können basierend auf diesen Daten auch Vorhersagen getroffen werden, die zur Lösung gesellschaftlicher Problemstellungen beitragen. Hierzu gehören beispielsweise das Aufspüren von Steuerbetrug und eine bessere medizinische Versorgung. Welchen Mehrwert hierbei die Verknüpfung weitreichender Administrativdaten bietet, ist bisher noch nicht ausreichend untersucht worden. In diesem Beitrag wird am Beispiel von Antibiotikaverschreibungen für Harnwegsinfekte in Dänemark gezeigt, dass die Verknüpfung von Daten eine Verbesserung von Verschreibungsentscheidungen ermöglichen kann. Um für Deutschland vergleichbare Erkenntnisse zu gewinnen und datenbasierte, politikrelevante Anwendungen unter geltenden Datenschutzstandards zu identifizieren, ist ein Zugang zu verknüpften Administrativdaten für Forschungszwecke nötig. Hierfür müssen fragmentierte Datensilos weiter reduziert und Infrastrukturen mit Blick auf Anwendungsmöglichkeiten aufgebaut werden.
BASE
Personendaten aus der Verwaltung (Administrativdaten) haben sich in den letzten Jahrzehnten als wichtige Basis zur Evaluierung von Politikmaßnahmen erwiesen. Durch maschinelles Lernen können basierend auf diesen Daten auch Vorhersagen getroffen werden, die zur Lösung gesellschaftlicher Problemstellungen beitragen. Hierzu gehören beispielsweise das Aufspüren von Steuerbetrug und eine bessere medizinische Versorgung. Welchen Mehrwert hierbei die Verknüpfung weitreichender Administrativdaten bietet, ist bisher noch nicht ausreichend untersucht worden. In diesem Beitrag wird am Beispiel von Antibiotikaverschreibungen für Harnwegsinfekte in Dänemark gezeigt, dass die Verknüpfung von Daten eine Verbesserung von Verschreibungsentscheidungen ermöglichen kann. Um für Deutschland vergleichbare Erkenntnisse zu gewinnen und datenbasierte, politikrelevante Anwendungen unter geltenden Datenschutzstandards zu identifizieren, ist ein Zugang zu verknüpften Administrativdaten für Forschungszwecke nötig. Hierfür müssen fragmentierte Datensilos weiter reduziert und Infrastrukturen mit Blick auf Anwendungsmöglichkeiten aufgebaut werden.
BASE