rbioacc: An R-package to analyze toxicokinetic data
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 242, S. 113875
ISSN: 1090-2414
7 Ergebnisse
Sortierung:
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 242, S. 113875
ISSN: 1090-2414
International audience ; In the European Union, more than 100,000 man-made chemical substances are awaiting an environmental risk assessment (ERA). Simultaneously, ERA of these chemicals has now entered a new era requiring determination of risks for physiologically diverse species exposed to several chemicals, often in mixtures. Additionally, recent recommendations from regulatory bodies underline a crucial need for the use of mechanistic effect models, allowing assessments that are not only ecologically relevant, but also more integrative, consistent and efficient. At the individual level, toxicokinetic-toxicodynamic (TKTD) models are particularly encouraged for the regulatory assessment of pesticide-related risks on aquatic organisms. In this paper, we first briefly present a classical dose-response model to showcase the on-line MOSAIC tool, which offers all necessary services in a turnkey web platform, whatever the type of data analyzed. Secondly, we focus on the necessity to account for the time-dimension of the exposure by illustrating how MOSAIC can support a robust calculation of bioaccumulation metrics. Finally, we show how MOSAIC can be of valuable help to fully complete the EFSA workflow regarding the use of TKTD models, especially with GUTS models, providing a user-friendly interface for calibrating, validating and predicting survival over time under any time-variable exposure scenario of interest. Our conclusion proposes a few lines of thought for an easier use of modelling in ERA.
BASE
International audience ; In the European Union, more than 100,000 man-made chemical substances are awaiting an environmental risk assessment (ERA). Simultaneously, ERA of these chemicals has now entered a new era requiring determination of risks for physiologically diverse species exposed to several chemicals, often in mixtures. Additionally, recent recommendations from regulatory bodies underline a crucial need for the use of mechanistic effect models, allowing assessments that are not only ecologically relevant, but also more integrative, consistent and efficient. At the individual level, toxicokinetic-toxicodynamic (TKTD) models are particularly encouraged for the regulatory assessment of pesticide-related risks on aquatic organisms. In this paper, we first briefly present a classical dose-response model to showcase the on-line MOSAIC tool, which offers all necessary services in a turnkey web platform, whatever the type of data analyzed. Secondly, we focus on the necessity to account for the time-dimension of the exposure by illustrating how MOSAIC can support a robust calculation of bioaccumulation metrics. Finally, we show how MOSAIC can be of valuable help to fully complete the EFSA workflow regarding the use of TKTD models, especially with GUTS models, providing a user-friendly interface for calibrating, validating and predicting survival over time under any time-variable exposure scenario of interest. Our conclusion proposes a few lines of thought for an easier use of modelling in ERA.
BASE
International audience ; In the European Union, more than 100,000 man-made chemical substances are awaiting an environmental risk assessment (ERA). Simultaneously, ERA of these chemicals has now entered a new era requiring determination of risks for physiologically diverse species exposed to several chemicals, often in mixtures. Additionally, recent recommendations from regulatory bodies underline a crucial need for the use of mechanistic effect models, allowing assessments that are not only ecologically relevant, but also more integrative, consistent and efficient. At the individual level, toxicokinetic-toxicodynamic (TKTD) models are particularly encouraged for the regulatory assessment of pesticide-related risks on aquatic organisms. In this paper, we first briefly present a classical dose-response model to showcase the on-line MOSAIC tool, which offers all necessary services in a turnkey web platform, whatever the type of data analyzed. Secondly, we focus on the necessity to account for the time-dimension of the exposure by illustrating how MOSAIC can support a robust calculation of bioaccumulation metrics. Finally, we show how MOSAIC can be of valuable help to fully complete the EFSA workflow regarding the use of TKTD models, especially with GUTS models, providing a user-friendly interface for calibrating, validating and predicting survival over time under any time-variable exposure scenario of interest. Our conclusion proposes a few lines of thought for an easier use of modelling in ERA.
BASE
In: Environmental science and pollution research: ESPR, Band 29, Heft 20, S. 29244-29257
ISSN: 1614-7499
In: Environmental science and pollution research: ESPR, Band 25, Heft 9, S. 8364-8376
ISSN: 1614-7499
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 180, S. 33-42
ISSN: 1090-2414