Born Entrepreneur? Adolescents' Personality Characteristics and Self-Employment in Adulthood
In: IZA Discussion Paper No. 9805
23 Ergebnisse
Sortierung:
In: IZA Discussion Paper No. 9805
SSRN
In: BERG working paper series 108
In: IZA Discussion Paper No. 8029
SSRN
In: The aging male: the official journal of the International Society for the Study of the Aging Male, Band 14, Heft 4, S. 237-242
ISSN: 1473-0790
In: IZA Discussion Paper No. 9907
SSRN
In: Child Development Research, Band 2012, S. 1-8
ISSN: 2090-3995
Breastfeeding is known to benefit both the mother's and the child's health. Our aim was to test the interactive effects between estrogen receptor 1 (ESR1) rs2234693 and breastfeeding when predicting the child's later depression in adulthood. A sample of 1209 boys and girls from the Young Finns Study were followed from childhood over 27 years up to age 30–45 years. Adulthood depressive symptoms were self-reported by the participants using the Beck Depression Inventory. Breastfeeding as well as several possibly confounding factors was reported by the parents in childhood or adolescence. Breastfeeding tended to predict lower adult depression, while ESR1 rs2234693 was not associated with depression. A significant interaction between breastfeeding and ESR1 was found to predict participants' depression (P=.004) so that C/C genotype carriers who had not been breastfed had higher risk of depression than T-allele carriers (40.5% versus 13.0%) while there were no genotypic differences among those who had been breastfed. In sex-specific analysis, this interaction was evident only among women. We conclude that child's genes and maternal behavior may interact in the development of child's adult depression so that breastfeeding may buffer the inherited depression risk possibly associated with the C/C genotype of the ESR1 gene.
In: Employee relations, Band 42, Heft 6, S. 1423-1440
ISSN: 1758-7069
PurposeA prominent labour market feature in recent decades has been the increase in abstract and service jobs, while the demand for routine work has declined. This article examines whether the components of Type A behaviour predict workers' selection into non-routine abstract, non-routine service and routine jobs.Design/methodology/approachBuilding on the work by Barrick et al. (2013), this article first presents how the theory of purposeful work behaviour can be used to explain how individuals with different levels of Type A components sort into abstract, service and routine jobs. Then, using longitudinal data, it examines whether the components of Type A behaviour predict occupational sorting. Estimations were performed based on the linear regression method.FindingsThe results show that the Type A dimension "leadership" was associated with a higher level of abstract and service job tasks in occupation. High eagerness-energy and responsibility were also positively linked with occupation's level of abstract tasks. These results suggest that workers sort into jobs that allow them to pursue higher-order implicit goals.Originality/valueJob market polarisation towards low-routine jobs has had a pervasive influence on the labour market during the past few decades. Based on high-quality data that combine prime working-age register information on occupational attainment with information about personality characteristics, the findings contribute to our knowledge of how personality characteristics contribute to occupational sorting in terms of this important job aspect.
In: Journal of vocational behavior, Band 83, Heft 2, S. 153-160
ISSN: 1095-9084
Context: Passive smoke exposure has been linked to the risk of osteoporosis in adults. Objective: We examined the independent effects of childhood passive smoke exposure on adult bone health. Design/Setting: Longitudinal, the Cardiovascular Risk in Young Finns Study. Participants: The study cohort included 1422 individuals followed for 28 years since baseline in 1980 (age 3 to 18 years). Exposure to passive smoking was determined in childhood. In adulthood, peripheral bone traits were assessed with peripheral quantitative CT (pQCT) at the tibia and radius, and calcaneal mineral density was estimated with quantitative ultrasound. Fracture data were gathered by questionnaires. Results: Parental smoking in childhood was associated with lower pQCT-derived bone sum index in adulthood (beta +/- SE, -0.064 +/- 0.023 per smoking parent; P= 0.004) in multivariate models adjusted for age, sex, active smoking, body mass index, serum 25-OH vitamin D concentration, physical activity, and parental socioeconomic position. Similarly, parental smoking was associated with lower heel ultrasound estimated bone mineral density in adulthood (beta +/- SE, -0.097 +/- 0.041 per smoking parent; P = 0.02). Parental smoking was also associated with the incidence of low-energy fractures (OR, 1.28; 95% CI, 1.01 to 1.62). Individuals with elevated cotinine levels (3 to 20 ng/mL) in childhood had lower bone sum index with pQCT (beta +/- SE, -0.206 +/- 0.057; P = 0.0003). Children whose parents smoked and had high cotinine levels (3 to 20 ng/mL) had significantly lower pQCT-derived bone sum index compared with those with smoking parents but had low cotinine levels ( Conclusions and Relevance: Children of parents who smoke have evidence of impaired bone health in adulthood. ; Peer reviewed
BASE
Cytokines are essential regulatory components of the immune system, and their aberrant levels have been linked to many disease states. Despite increasing evidence that cytokines operate in concert, many of the physiological interactions between cytokines, and the shared genetic architecture that underlies them, remain unknown. Here, we aimed to identify and characterize genetic variants with pleiotropic effects on cytokines. Using three population-based cohorts (n = 9,263), we performed multivariate genome-wide association studies (GWAS) for a correlation network of 11 circulating cytokines, then combined our results in meta-analysis. We identified a total of eight loci significantly associated with the cytokine network, of which two (PDGFRB and ABO) had not been detected previously. In addition, conditional analyses revealed a further four secondary signals at three known cytokine loci. Integration, through the use of Bayesian colocalization analysis, of publicly available GWAS summary statistics with the cytokine network associations revealed shared causal variants between the eight cytokine loci and other traits; in particular, cytokine network variants at the ABO, SERPINE2, and ZFPM2 loci showed pleiotropic effects on the production of immune-related proteins, on metabolic traits such as lipoprotein and lipid levels, on blood-cell-related traits such as platelet count, and on disease traits such as coronary artery disease and type 2 diabetes. ; Artika Nath was supported by an Australian Postgraduate Award. This research was supported in part by the Victorian Government's OIS Program. Michael Inouye was supported by an NHMRC and Australian Heart Foundation Career Development Fellowship (no. 1061435). Gad Abraham was supported by an NHMRC Early Career Fellowship (no. 1090462). Qin Qin Huang is supported by the Melbourne International Research Scholarship. The Young Finns Study has been financially supported by the Academy of Finland: grants 286284, 134309 (Eye), 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), and 41071 (Skidi); the Social Insurance Institution of Finland; Competitive State Research Financing of the Expert Responsibility area of Kuopio, Tampere and Turku University Hospitals (grant X51001); Juho Vainio Foundation; Paavo Nurmi Foundation; Finnish Foundation for Cardiovascular Research; Finnish Cultural Foundation; The Sigrid Juselius Foundation; Tampere Tuberculosis Foundation; Emil Aaltonen Foundation; Yrjö Jahnsson Foundation; Signe and Ane Gyllenberg Foundation; Diabetes Research Foundation of Finnish Diabetes Association; and EU Horizon 2020 (grant 755320 for TAXINOMISIS); and European Research Council (grant 742927 for MULTIEPIGEN project); Tampere University Hospital Supporting Foundation. Peter Würtz is supported by the Novo Nordisk Foundation (15998) and Academy of Finland (312476 and 312477).
BASE
In: Parmar , P , Lowry , E , Cugliari , G , Suderman , M , Wilson , R , Karhunen , V , Andrew , T , Wiklund , P , Wielscher , M , Guarrera , S , Teumer , A , Lehne , B , Milani , L , de Klein , N , Mishra , P P , Melton , P E , Mandaviya , P R , Kasela , S , Nano , J , Zhang , W , Zhang , Y , Uitterlinden , A G , Peters , A , Schoettker , B , Gieger , C , Anderson , D , Boomsma , D , Grabe , H J , Panico , S , Veldink , J H , van Meurs , J B J , van den Berg , L , Beilin , L J , Franke , L , Loh , M , van Greevenbroek , M M J , Nauck , M , Kahonen , M , Hurme , M A , Raitakari , O T , Franco , O H , Slagboom , P E , van der Harst , P , Kunze , S , Felix , S B , Zhang , T , Chen , W , Mori , T A , Bonnefond , A , Heijmans , B T , BIOS Consortium , GLOBAL Meth QTL Consortium , Jarvelin , M-R & Sebert , S 2018 , ' Association of maternal prenatal smoking GFI1-locus and cardiometabolic phenotypes in 18,212 adults ' , EBioMedicine , vol. 38 , pp. 206-216 . https://doi.org/10.1016/j.ebiom.2018.10.066
Background: DNA methylation at the GFI1-locus has been repeatedly associated with exposure to smoking from the foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure to maternal prenatal smoking with offspring's adult cardio-metabolic health. Methods: We meta-analysed the association between DNA methylation at GFI1-locus with maternal prenatal smoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe, Australia, and USA (n= 18,212). DNA methylation at the GFI1-locus was measured in whole-blood. Multivariable regression models were fitted to examine its association with exposure to prenatal and own adult smoking. DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fasting glucose (FG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), diastolic, and systolic blood pressure (BP). Findings: Lower DNA methylation at three out of eight GFI1-CpGs was associated with exposure to maternal prenatal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation at cg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when adjusted for sex, age, and adult smoking with Bonferroni-corrected P <0.012. In contrast, lower DNA methylation at cg09935388, the strongest adult own smoking locus, was associated with decreased BMI, WC, and BP (adjusted 1 x 10(-7) Interpretation: Epigenetic changes at the GFI1 were linked to smoking exposure in-utero/in-adulthood and robustly associated with cardio-metabolic risk factors. Fund: European Union's Horizon 2020 research and innovation programme under grant agreement no. 633595 DynaHEALTH. (c) 2018 The Authors. Published by Elsevier B.V.
BASE
In: BIOS Consortium , GLOBAL Meth QTL , Parmar , P , Lowry , E , Cugliari , G , Suderman , M , Wilson , R , Karhunen , V , Andrew , T , Wiklund , P , Wielscher , M , Guarrera , S , Teumer , A , Lehne , B , Milani , L , de Klein , N , Mishra , P P , Melton , P E , Mandaviya , P R , Kasela , S , Nano , J , Zhang , W , Zhang , Y , Uitterlinden , A G , Peters , A , Schoettker , B , Gieger , C , Anderson , D , Boomsma , D , Grabe , H J , Panico , S , Veldink , J H , van Meurs , J B J , van den Berg , L , Beilin , L J , Franke , L , Loh , M , van Greevenbroek , M M J , Nauck , M , Kahonen , M , Hurme , M A , Raitakari , O T , Franco , O H , Slagboom , P E , van der Harst , P , Kunze , S , Felix , S B , Zhang , T , Chen , W , Mori , T A , Bonnefond , A & Verweij , N 2018 , ' Association of maternal prenatal smoking GFI1-locus and cardiometabolic phenotypes in 18,212 adults ' , EBioMedicine , vol. 38 , pp. 206-216 . https://doi.org/10.1016/j.ebiom.2018.10.066 ; ISSN:2352-3964
Background: DNA methylation at the GFI1-locus has been repeatedly associated with exposure to smoking from the foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure to maternal prenatal smoking with offspring's adult cardio-metabolic health. Methods: We meta-analysed the association between DNA methylation at GFI1-locus with maternal prenatal smoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe, Australia, and USA (n= 18,212). DNA methylation at the GFI1-locus was measured in whole-blood. Multivariable regression models were fitted to examine its association with exposure to prenatal and own adult smoking. DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fasting glucose (FG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), diastolic, and systolic blood pressure (BP). Findings: Lower DNA methylation at three out of eight GFI1-CpGs was associated with exposure to maternal prenatal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation at cg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when adjusted for sex, age, and adult smoking with Bonferroni-corrected P <0.012. In contrast, lower DNA methylation at cg09935388, the strongest adult own smoking locus, was associated with decreased BMI, WC, and BP (adjusted 1 x 10(-7) Interpretation: Epigenetic changes at the GFI1 were linked to smoking exposure in-utero/in-adulthood and robustly associated with cardio-metabolic risk factors. Fund: European Union's Horizon 2020 research and innovation programme under grant agreement no. 633595 DynaHEALTH. (c) 2018 The Authors. Published by Elsevier B.V.
BASE
Background: DNA methylation at the GFI1-locus has been repeatedly associated with exposure to smoking from the foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure to maternal prenatal smoking with offspring's adult cardio-metabolic health. Methods: We meta-analysed the association between DNA methylation at GFI1-locus with maternal prenatal smoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe, Australia, and USA (n= 18,212). DNA methylation at the GFI1-locus was measured in whole-blood. Multivariable regression models were fitted to examine its association with exposure to prenatal and own adult smoking. DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fasting glucose (FG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), diastolic, and systolic blood pressure (BP). Findings: Lower DNA methylation at three out of eight GFI1-CpGs was associated with exposure to maternal prenatal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation at cg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when adjusted for sex, age, and adult smoking with Bonferroni-corrected P < 0.012. In contrast, lower DNA methylation at cg09935388, the strongest adult own smoking locus, was associated with decreased BMI, WC, and BP (adjusted 1 x 10(-7) < P < 0.01). Similarly, lower DNA methylation at cg12876356, cg18316974, cg09662411, and cg18146737 was associated with decreased BMI and WC (5 x 10(-8) < P < 0.001). Lower DNA methylation at all the CpGs was consistently associated with higher TG levels. Interpretation: Epigenetic changes at the GFI1 were linked to smoking exposure in-utero/in-adulthood and robustly associated with cardio-metabolic risk factors. Fund: European Union's Horizon 2020 research and innovation programme under grant agreement no. 633595 DynaHEALTH.
BASE
Publisher's version (útgefin grein). ; Background: Genome-wide association studies conducted on QRS duration, an electrocardiographic measurement associated with heart failure and sudden cardiac death, have led to novel biological insights into cardiac function. However, the variants identified fall predominantly in non-coding regions and their underlying mechanisms remain unclear. Results: Here, we identify putative functional coding variation associated with changes in the QRS interval duration by combining Illumina HumanExome BeadChip genotype data from 77,898 participants of European ancestry and 7695 of African descent in our discovery cohort, followed by replication in 111,874 individuals of European ancestry from the UK Biobank and deCODE cohorts. We identify ten novel loci, seven within coding regions, including ADAMTS6, significantly associated with QRS duration in gene-based analyses. ADAMTS6 encodes a secreted metalloprotease of currently unknown function. In vitro validation analysis shows that the QRS-associated variants lead to impaired ADAMTS6 secretion and loss-of function analysis in mice demonstrates a previously unappreciated role for ADAMTS6 in connexin 43 gap junction expression, which is essential for myocardial conduction. Conclusions: Our approach identifies novel coding and non-coding variants underlying ventricular depolarization and provides a possible mechanism for the ADAMTS6-associated conduction changes. ; Funding This work was funded by a grant to YJ from the British Heart Foundation (PG/12/38/29615). AGES: This study has been funded by NIH contracts N01-AG-1-2100 and 271201200022C, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The study is approved by the Icelandic National Bioethics Committee, VSN: 00–063. The researchers are indebted to the participants for their willingness to participate in the study. ARIC: The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C), R01HL087641, R01HL59367, and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. Funding support for "Building on GWAS for NHLBI-diseases: the U.S. CHARGE consortium" was provided by the NIH through the American Recovery and Reinvestment Act of 2009 (ARRA) (5RC2HL102419). BRIGHT: The Exome Chip genotyping was funded by Wellcome Trust Strategic Awards (083948 and 085475). This work was also supported by the Medical Research Council of Great Britain (Grant no. G9521010D); and by the British Heart Foundation (Grant no. PG/02/128). AFD was supported by the British Heart Foundation (Grant nos. RG/07/005/23633 and SP/08/005/25115); and by the European Union Ingenious HyperCare Consortium: Integrated Genomics, Clinical Research, and Care in Hypertension (grant no. LSHM-C7–2006-037093). The BRIGHT study is extremely grateful to all the patients who participated in the study and the BRIGHT nursing team. We would also like to thank the Barts Genome Centre staff for their assistance with this project. CHS: This Cardiovascular Health Study (CHS) research was supported by NHLBI contracts HHSN268201800001C, HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants R01HL068986, U01HL080295, R01HL087652, R01HL105756, R01HL103612, R01HL120393, and U01HL130114 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. ERF: The ERF study as a part of EUROSPAN (European Special Populations Research Network) was supported by European Commission FP6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received funding from the European Community's Seventh Framework Programme (FP7/2007–2013)/grant agreement HEALTH-F4–2007-201413 by the European Commission under the programme "Quality of Life and Management of the Living Resources" of 5th Framework Programme (no. QLG2-CT-2002-01254). The ERF study was further supported by ENGAGE consortium and CMSB. High-throughput analysis of the ERF data was supported by joint grant from Netherlands Organization for Scientific Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043). We are grateful to all study participants and their relatives, general practitioners, and neurologists for their contributions to the ERF study and to P Veraart for her help in genealogy, J Vergeer for the supervision of the laboratory work, and P Snijders for his help in data collection. FHS: The Framingham Heart Study (FHS) research reported in this article was supported by a grant from the National Heart, Lung, and Blood Institute (NHLBI), HL120393. Generation Scotland: Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates (CZD/16/6) and the Scottish Funding Council (HR03006). Genotyping of the Generation Scotland and Scottish Family Health Study samples was carried out by the Genetics Core Laboratory at the Clinical Research Facility, Edinburgh, Scotland and was funded by the UK's Medical Research Council. GOCHA: The Genetics of Cerebral Hemorrhage with Anticoagulation was carried out as a collaborative study supported by grants R01NS073344, R01NS059727, and 5K23NS059774 from the NIH–National Institute of Neurological Disorders and Stroke (NIH-NINDS). GRAPHIC: The GRAPHIC Study was funded by the British Heart Foundation (BHF/RG/2000004). NJS and CPN are supported by the British Heart Foundation and is a NIHR Senior Investigator. This work falls under the portfolio of research supported by the NIHR Leicester Cardiovascular Biomedical Research. INGI-FVG: This study has been funded by Regione FVG (L.26.2008). INTER99: The Inter99 was initiated by Torben Jørgensen (PI), Knut Borch-Johnsen (co-PI), Hans Ibsen and Troels F. Thomsen. The steering committee comprises the former two and Charlotta Pisinger. The study was financially supported by research grants from the Danish Research Council, the Danish Centre for Health Technology Assessment, Novo Nordisk Inc., Research Foundation of Copenhagen County, Ministry of Internal Affairs and Health, the Danish Heart Foundation, the Danish Pharmaceutical Association, the Augustinus Foundation, the Ib Henriksen Foundation, the Becket Foundation, and the Danish Diabetes Association. The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (www.metabol.ku.dk). JHS: We thank the Jackson Heart Study (JHS) participants and staff for their contributions to this work. The JHS is supported by contracts HHSN268201300046C, HHSN268201300047C, HHSN268201300048C, HHSN268201300049C, HHSN268201300050C from the National Heart, Lung, and Blood Institute and the National Institute on Minority Health and Health Disparities. Dr. Wilson is supported by U54GM115428 from the National Institute of General Medical Sciences. KORA: The KORA study was initiated and financed by the Helmholtz Zentrum München – German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ. Korcula: This work was funded by the Medical Research Council UK, The Croatian Ministry of Science, Education and Sports (grant 216–1080315-0302), the Croatian Science Foundation (grant 8875), the Centre of Excellence in Personalized health care, and the Centre of Competencies for Integrative Treatment, Prevention and Rehabilitation using TMS. LifeLines: The LifeLines Cohort Study and generation and management of GWAS genotype data for the LifeLines Cohort Study are supported by The Netherlands Organization of Scientific Research NWO (grant 175.010.2007.006), the Economic Structure Enhancing Fund (FES) of the Dutch government, the Ministry of Economic Affairs, the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the Northern Netherlands Collaboration of Provinces (SNN), the Province of Groningen, University Medical Center Groningen, the University of Groningen, Dutch Kidney Foundation, and Dutch Diabetes Research Foundation. Niek Verweij is supported by NWO-VENI (016.186.125) and Marie Sklodowska-Curie GF (call: H2020-MSCA-IF-2014, Project ID: 661395). UHP: Folkert W. Asselbergs is supported by UCL Hospitals NIHR Biomedical Research Centre. Ilonca Vaartjes is supported by a Dutch Heart Foundation grant DHF project "Facts and Figures." MGH-CAMP: Dr. Patrick Ellinor is funded by NIH grants (2R01HL092577, 1R01HL128914, R01HL104156, and K24HL105780) and American Heart Association Established Investigator Award 13EIA14220013 (Ellinor). Dr. Steve Lubitz is funded by NIH grants K23HL114724 and a Doris Duke Charitable Foundation Clinical Scientist Development Award 2014105. NEO: The authors of the NEO study thank all individuals who participated in the Netherlands Epidemiology in Obesity study, all participating general practitioners for inviting eligible participants, and all research nurses for collection of the data. We thank the NEO study group, Pat van Beelen, Petra Noordijk, and Ingeborg de Jonge for the coordination, lab, and data management of the NEO study. We also thank Arie Maan for the analyses of the electrocardiograms. The genotyping in the NEO study was supported by the Centre National de Génotypage (Paris, France), headed by Jean-Francois Deleuze. The NEO study is supported by the participating Departments, the Division and the Board of Directors of the Leiden University Medical Center, and by the Leiden University, Research Profile Area Vascular and Regenerative Medicine. Dennis Mook-Kanamori is supported by Dutch Science Organization (ZonMW-VENI Grant 916.14.023). RS-I: The generation and management of the Illumina Exome Chip v1.0 array data for the Rotterdam Study (RS-I) was executed by the Human Genotyping Facility of the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands. The Exome chip array dataset was funded by the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, from the Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research (NWO)-sponsored Netherlands Consortium for Healthy Aging (NCHA; project nr. 050–060-810); the Netherlands Organization for Scientific Research (NWO; project number 184021007); and by the Rainbow Project (RP10; Netherlands Exome Chip Project) of the Biobanking and Biomolecular Research Infrastructure Netherlands (BBMRI-NL; www.bbmri.nl). We thank Ms. Mila Jhamai, Ms. Sarah Higgins, and Mr. Marijn Verkerk for their help in creating the exome chip database, and Carolina Medina-Gomez, MSc, Lennard Karsten, MSc, and Linda Broer PhD for QC and variant calling. Variants were called using the best practice protocol developed by Grove et al. as part of the CHARGE consortium exome chip central calling effort. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are grateful to the study participants, the staff from the Rotterdam Study, and the participating general practitioners and pharmacists. The work of Bruno H. Stricker is supported by grants from the Netherlands Organization for Health Research and Development (ZonMw) (Priority Medicines Elderly 113102005 to ME and DoelmatigheidsOnderzoek 80–82500–98-10208 to BHS). The work of Mark Eijgelsheim is supported by grants from the Netherlands Organization for Health Research and Development (ZonMw) (Priority Medicines Elderly 113102005 to ME and DoelmatigheidsOnderzoek 80–82500–98-10208 to BHS). SHIP: SHIP is supported by the BMBF (grants 01ZZ9603, 01ZZ0103, and 01ZZ0403) and the German Research Foundation (Deutsche Forschungsgemeinschaft [DFG]; grant GR 1912/5–1). SHIP and SHIP-TREND are part of the Community Medicine Research net (CMR) of the Ernst-Moritz-Arndt University Greifswald (EMAU) which is funded by the BMBF as well as the Ministry for Education, Science and Culture and the Ministry of Labor, Equal Opportunities, and Social Affairs of the Federal State of Mecklenburg-West Pomerania. The CMR encompasses several research projects that share data from SHIP. The EMAU is a member of the Center of Knowledge Interchange (CKI) program of the Siemens AG. SNP typing of SHIP and SHIP-TREND using the Illumina Infinium HumanExome BeadChip (version v1.0) was supported by the BMBF (grant 03Z1CN22). We thank all SHIP and SHIP-TREND participants and staff members as well as the genotyping staff involved in the generation of the SNP data. TWINSUK: TwinsUK is funded by the Wellcome Trust, Medical Research Council, European Union, the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. UKBB: This research has been conducted using the UK Biobank Resource (application 8256 - Understanding genetic influences in the response of the cardiac electrical system to exercise) and is supported by Medical Research Council grant MR/N025083/1. We also wish to acknowledge the support of the NIHR Cardiovascular Biomedical Research Unit at Barts and Queen Mary University of London, UK. PD Lambiase acknowledges support from the UCLH Biomedicine NIHR. MO is supported by an IEF 2013 Marie Curie fellowship. JR acknowledges support from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007–2013) under REA grant agreement no. 608765. YFS: The Young Finns Study has been financially supported by the Academy of Finland: grants 286284, 134309 (Eye), 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), and 41071 (Skidi); the Social Insurance Institution of Finland; Competitive State Research Financing of the Expert Responsibility area of Kuopio, Tampere and Turku University Hospitals (grant X51001); Juho Vainio Foundation; Paavo Nurmi Foundation; Finnish Foundation for Cardiovascular Research; Finnish Cultural Foundation; Tampere Tuberculosis Foundation; Emil Aaltonen Foundation; Yrjö Jahnsson Foundation; Signe and Ane Gyllenberg Foundation; and Diabetes Research Foundation of Finnish Diabetes Association. The expert technical assistance in the statistical analyses by Irina Lisinen is gratefully acknowledged. Cell culture and biochemistry: Funding was provided by the National Institutes of Health (Program of Excellence in Glycoscience award HL107147 to SSA and F32AR063548 to TJM) and the David and Lindsay Morgenthaler Postdoctoral Fellowship (to TJM) and by the Allen Distinguished Investigator Program, through support made by The Paul G. Allen Frontiers Group and the American Heart Association (to SSA). Mutant mouse model: Adamts6 mutant mice were generated and further propagated and analyzed by funding provided by NIH grants HL098180 and HL132024 (to CWL) and by the Allen Distinguished Investigator Program, through support made by The Paul G. Allen Frontiers Group and the American Heart Association (to SSA). ; Peer Reviewed
BASE
HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10−8 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples. ; 3C. Three-City Study. The work was made possible by the participation of the control subjects, the patients, and their families. We thank Dr. Anne Boland (CNG) for her technical help in preparing the DNA samples for analyses. This work was supported by the National Foundation for Alzheimer's disease and related disorders, the Institut Pasteur de Lille and the Centre National de Génotypage. The 3C Study was performed as part of a collaboration between the Institut National de la Santé et de la Recherche Médicale (Inserm), the Victor Segalen Bordeaux II University and Sanofi-Synthélabo. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study was also funded by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, MGEN, Institut de la Longévité, Agence Française de Sécurité Sanitaire des Produits de Santé, the Aquitaine and Bourgogne Regional Councils, Fondation de France and the joint French Ministry of Research/INSERM "Cohortes et collections de données biologiques" programme. Lille Génopôle received an unconditional grant from Eisai. AGES. Age, Gene/Environment Susceptibility-Reykjavik Study. This study has been funded by NIH contract N01-AG-1-2100, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The study is approved by the Icelandic National Bioethics Committee, VSN: 00-063. The researchers are indebted to the participants for their willingness to participate in the study. ARIC. Atherosclerosis Risk in Communities study. The ARIC study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C), R01HL087641, R01HL59367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. This work as well as YL and AK were supported by the German Research Foundation (KO 3598/2-1, KO 3598/3-1 and CRC1140 A05 to AK). ASPS. Austrian Stroke Prevention Study. The research reported in this article was funded by the Austrian Science Fond (FWF) grant number P20545-P05 and P13180. The Medical University of Graz supports the databank of the ASPS. The authors thank the staff and the participants of the ASPS for their valuable contributions. We thank Birgit Reinhart for her long-term administrative commitment and Ing Johann Semmler for the technical assistance at creating the DNA-bank. BMES. Blue Mountains Eye Study. The BMES has been supported by the Australian RADGAC grant (1992- 94) and Australian National Health & Medical Research Council, Canberra Australia (Grant Nos: 974159, 211069, 991407, 457349). The GWAS studies of Blue Mountains Eye Study population are supported by the Australian National Health & Medical Research Council (Grant Nos: 512423, 475604, 529912) and the Wellcome Trust, UK (2008). EGH and JJW are funded by the Australian National Health & Medical Research Council Fellowship Schemes. CILENTO. Italian Network on Genetic Isolates – Cilento. We thank the populations of Cilento for their participation in the study. The study was supported by the Italian Ministry of Universities and CNR 36 (PON03PE_00060_7, Interomics Flagship Project), the Assessorato Ricerca Regione Campania, the Fondazione con il SUD (2011-PDR-13), and the Istituto Banco di Napoli - Fondazione to MC. COLAUS. The CoLaus authors thank Yolande Barreau, Mathieu Firmann, Vladimir Mayor, Anne-Lise Bastian, Binasa Ramic, Martine Moranville, Martine Baumer, Marcy Sagette, Jeanne Ecoffey and Sylvie Mermoud for data collection. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, the Swiss National Science Foundation (33CSCO- 122661, 3200BO-111361/2, 3100AO-116323/1, 310000-112552). The computations for CoLaus imputation were performed in part at the Vital-IT center for high performance computing of the Swiss Institute of Bioinformatics. We thank Vincent Mooser for his contribution to the CoLaus study. EGCUT. Estonian Genome Center University of Tartu. EGCUT received financing from FP7 grants (278913, 306031, 313010) and targeted financing from Estonian Government (SF0180142s08). EGCUT studies were covered from Infra-structure grant no. 3.2.0304.11-0312 funded mostly by the European Regional Development Fund, Center of Excellence in Genomics (EXCEGEN) and University of Tartu (SP1GVARENG). We acknowledge EGCUT technical personnel, especially Mr V. Soo and S. Smit. Data analyses were carried out in part in the High Performance Computing Center of the University of Tartu. FamHS. Family Heart Study. The FHS work was supported in part by NIH grants 5R01HL08770003, 5R01HL08821502 (Michael A. Province) from the NHLBI and 5R01DK07568102, 5R01DK06833603 from the NIDDK (I.B.B.). The authors thank the staff and participants of the FamHS for their important contributions. FHS. Framingham Heart Study. This research was conducted in part using data and resources from the Framingham Heart Study of the National Heart Lung and Blood Institute of the National Institutes of Health and Boston University School of Medicine. The analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. This work was partially supported by the National Heart, Lung and Blood Institute's Framingham Heart Study (Contract No. N01-HC-25195) and its contract with Affymetrix, Inc. for genotyping services (Contract No. N02-HL-6-4278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. GENDIAN. GENetics of DIAbetic Nephropathy study. The support of the physicians, the patients, and the staff of the Diabetes Zentrum Mergentheim (Head: Prof. Dr. Thomas Haak), the diabetes outpatient clinic Dr Nusser - Dr Kreisel, the dialysis centers KfH Amberg, KfH Bayreuth, KfH Deggendorf, KfH Donauwörth, KfH Freising, KfH Freyung, KfH Fürth, KfH Hof, KfH Ingolstadt, KfH Kelheim, KfH München Elsenheimerstraße, KfH München-Schwabing, KfH Neumarkt, KfH Neusäß, KfH Oberschleißheim, KfH Passau, KfH Plauen, KfH Regensburg Günzstraße, KfH Regensburg Caritas-Krankenhaus, KfH Straubing, KfH Sulzbach-Rosenberg, KfH Weiden, Dialysezentrum Augsburg Dr. Kirschner, Dialysezentrum Bad Alexandersbad, KfH Bamberg, Dialysezentrum Emmering, Dialysezentrum Klinikum Landshut, Dialysezentrum Landshut, Dialysezentrum Pfarrkirchen, Dialysezentrum Schwandorf, Dr. Angela Götz, the medical doctoral student Johanna Christ and the Study Nurse Ingrid Lugauer. The expert technical assistance of Claudia Strohmeier is acknowledged. Phenotyping was funded by the Dr. Robert PflegerStiftung (Dr Carsten A. Böger), the MSD Stipend Diabetes (Dr Carsten A. Böger) and the University Hospital of Regensburg (intramural grant ReForM A to Dr. A. Götz, ReForM C to Dr. Carsten Böger). Genome-wide genotyping was funded by the KfH Stiftung Präventivmedizin e.V. (Dr. Carsten A. Böger, Dr. Jens Brüning), the Else Kröner-Fresenius-Stiftung (2012_A147 to Dr Carsten A. Böger and Dr Iris M. Heid) and the University Hospital Regensburg (Dr Carsten A. Böger). Data analysis was funded by the Else 37 Kröner-Fresenius Stiftung (Dr. Iris M. Heid and Dr. Carsten A. Böger: 2012_A147; Dr. Carsten A. Böger and Dr. Bernhard K. Krämer: P48/08//A11/08). GENDIAN Study Group: Mathias Gorski, Iris M. Heid, Bernhard K. Krämer, Myriam Rheinberger, Michael Broll, Alexander Lammert, Jens Brüning, Matthias Olden, Klaus Stark, Claudia Strohmeier, Simone Neumeier, Sarah Hufnagel, Petra Jackermeier, Emilia Ruff, Johanna Christ, Peter Nürnberg, Thomas Haak, Carsten A. Böger. HABC. Health Aging and Body Composition Study. The HABC study was funded by the National Institutes of Aging. This research was supported by NIA contracts N01AG62101, N01AG62103, and N01AG62106. The genome-wide association study was funded by NIA grant 1R01AG032098-01A1 to Wake Forest University Health Sciences and genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging. HCS. Hunter Community Study. The University of Newcastle provided $300,000 from its Strategic Initiatives Fund, and $600,000 from the Gladys M Brawn Senior Research Fellowship scheme; Vincent Fairfax Family Foundation, a private philanthropic trust, provided $195,000; The Hunter Medical Research Institute provided media support during the initial recruitment of participants; and Dr Anne Crotty, Prof. Rodney Scott and Associate Prof. Levi provided financial support towards freezing costs for the long-term storage of participant blood samples. The authors would like to thank the men and women participating in the HCS as well as all the staff, investigators and collaborators who have supported or been involved in the project to date. A special thank you should go to Alison Koschel and Debbie Quain who were instrumental in setting up the pilot study and initial phase of the project. HPFS. Health Professionals Follow-Up Study. The NHS/HPFS type 2 diabetes GWAS (U01HG004399) is a component of a collaborative project that includes 13 other GWAS (U01HG004738, U01HG004422, U01HG004402, U01HG004729, U01HG004726, U01HG004735, U01HG004415, U01HG004436, U01HG004423, U01HG004728, RFAHG006033; National Institute of Dental & Craniofacial Research: U01DE018993, U01DE018903) funded as part of the Gene Environment-Association Studies (GENEVA) under the NIH Genes, Environment and Health Initiative (GEI). Assistance with phenotype harmonization and genotype cleaning, as well as with general study coordination, was provided by the GENEVA Coordinating Center (U01HG004446). Assistance with data cleaning was provided by the National Center for Biotechnology Information. Genotyping was performed at the Broad Institute of MIT and Harvard, with funding support from the NIH GEI (U01HG04424), and Johns Hopkins University Center for Inherited Disease Research, with support from the NIH GEI (U01HG004438) and the NIH contract "High throughput genotyping for studying the genetic contributions to human disease"(HHSN268200782096C). Additional funding for the current research was provided by the National Cancer Institute (P01CA087969, P01CA055075), and the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK058845). We thank the staff and participants of the NHS and HPFS for their dedication and commitment. INGI-CARLANTINO. Italian Network on Genetic Isolates – Carlantino. We thank Anna Morgan and Angela D'Eustacchio for technical support. We are grateful to the municipal administrators for their collaboration on the project and for logistic support. We thank all participants to this study. INGI-FVG. Italian Network on Genetic Isolates – Friuli Venezia-Giulia. We thank Anna Morgan and Angela D'Eustacchio for technical support. We are grateful to the municipal administrators for their collaboration on the project and for logistic support. We thank all participants to this study. 38 INGI-VAL BORBERA. Italian Network on Genetic Isolates – Val Borbera. We thank the inhabitants of the Val Borbera who made this study possible, the local administrations and the ASL-Novi Ligure (Al) for support. We also thank Clara Camaschella for data collection supervision and organization of the clinical data collection, Fiammetta Vigano` for technical help and Corrado Masciullo for building the analysis platform. The research was supported by funds from Compagnia di San Paolo, Torino, Italy; Fondazione Cariplo, Italy and Ministry of Health, Ricerca Finalizzata 2008 and 2011/2012, CCM 2010, PRIN 2009 and Telethon, Italy to DT. IPM. Mount Sinai BioMe Biobank Program. The Mount Sinai BioMe Biobank Program is supported by The Andrea and Charles Bronfman Philanthropies. KORA-F3 and F4. The genetic epidemiological work was funded by the NIH subcontract from the Children's Hospital, Boston, US, (H.E.W., I.M.H, prime grant 1 R01 DK075787-01A1), the German National Genome Research Net NGFN2 and NGFNplus (H.E.W. 01GS0823; WK project A3, number 01GS0834), the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ, and by the Else KrönerFresenius-Stiftung (P48/08//A11/08; C.A.B., B.K.K; 2012_A147 to CAB and IMH.). The Genetic Epidemiology at the University of Regensburg received financial contributions from the BMBF (01ER1206 and 01ER1507). The kidney parameter measurements in F3 were funded by the Else Kröner-FreseniusStiftung (C.A.B., B.K.K.) and the Regensburg University Medical Center, Germany; in F4 by the University of Ulm, Germany (W.K.). Genome wide genotyping costs in F3 and F4 were in part funded by the Else Kröner-Fresenius-Stiftung (C.A.B., B.K.K.). De novo genotyping in F3 and F4 were funded by the Else Kröner-Fresenius-Stiftung (C.A.B., B.K.K.). The KORA research platform and the MONICA Augsburg studies were initiated and financed by the Helmholtz Zentrum München, German Research Center for Environmental Health, by the German Federal Ministry of Education and Research and by the State of Bavaria. Genotyping was performed in the Genome Analysis Center (GAC) of the Helmholtz Zentrum München. The LINUX platform for computation were funded by the University of Regensburg for the Department of Epidemiology and Preventive Medicine at the Regensburg University Medical Center. LIFELINES. The authors wish to acknowledge the services of the Lifelines Cohort Study, the contributing research centers delivering data to Lifelines, and all the study participants. Lifelines group authors: Behrooz Z Alizadeh1 , H Marike Boezen1 , Lude Franke2 , Pim van der Harst3 , Gerjan Navis4 , Marianne Rots5 , Harold Snieder1 , Morris Swertz2 , Bruce HR Wolffenbuttel6 and Cisca Wijmenga2 1. Department of Epidemiology, University of Groningen, University Medical Center Groningen, The Netherlands 2. Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands 3. Department of Cardiology, University of Groningen, University Medical Center Groningen, The Netherlands 4. Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, The Netherlands 5. Department of Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands 6. Department of Endocrinology, University of Groningen, University Medical Center Groningen, The Netherlands MESA. Multi-Ethnic Study of Atherosclerosis. University of Washington (N01-HC-95159),Regents of the University of California (N01-HC-95160), Columbia University (N01-HC-95161), Johns Hopkins University 39 (N01-HC-95162, N01-HC-95168), University of Minnesota (N01-HC-95163), Northwestern University (N01-HC-95164), Wake Forest University (N01-HC-95165), University of Vermont (N01-HC-95166), New England Medical Center (N01-HC-95167), Harbor-UCLA Research and Education Institute (N01-HC- 95169), Cedars-Sinai Medical Center (R01-HL-071205), University of Virginia (subcontract to R01-HL- 071205) MICROS. Microisolates in South Tyrol study. We owe a debt of gratitude to all participants. We thank the primary care practitioners R. Stocker, S. Waldner, T. Pizzecco, J. Plangger, U. Marcadent and the personnel of the Hospital of Silandro (Department of Laboratory Medicine) for their participation and collaboration in the research project. In South Tyrol, the study was supported by the Ministry of Health and Department of Educational Assistance, University and Research of the Autonomous Province of Bolzano, the South Tyrolean Sparkasse Foundation, and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). NESDA. The Netherlands Study of Depression and Anxiety. The infrastructure for the NESDA study is funded through the Geestkracht programme of the Dutch Scientific Organization (ZON-MW, grant number 10-000-1002) and matching funds from participating universities and mental health care organizations. Genotyping in NESDA was funded by the Genetic Association Information Network (GAIN) of the Foundation for the US National Institutes of Health. NHS. Nurses' Health Study. The NHS/HPFS type 2 diabetes GWAS (U01HG004399) is a component of a collaborative project that includes 13 other GWAS (U01HG004738, U01HG004422, U01HG004402, U01HG004729, U01HG004726, U01HG004735, U01HG004415, U01HG004436, U01HG004423, U01HG004728, RFAHG006033; National Institute of Dental & Craniofacial Research: U01DE018993, U01DE018903) funded as part of the Gene Environment-Association Studies (GENEVA) under the NIH Genes, Environment and Health Initiative (GEI). Assistance with phenotype harmonization and genotype cleaning, as well as with general study coordination, was provided by the GENEVA Coordinating Center (U01HG004446). Assistance with data cleaning was provided by the National Center for Biotechnology Information. Genotyping was performed at the Broad Institute of MIT and Harvard, with funding support from the NIH GEI (U01HG04424), and Johns Hopkins University Center for Inherited Disease Research, with support from the NIH GEI (U01HG004438) and the NIH contract "High throughput genotyping for studying the genetic contributions to human disease"(HHSN268200782096C). The NHS renal function and albuminuria work was supported by DK66574. Additional funding for the current research was provided by the National Cancer Institute (P01CA087969, P01CA055075), and the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK058845). We thank the staff and participants of the NHS and HPFS for their dedication and commitment. NSPHS. The Northern Swedish Population Health Study. The NSPHS was supported by grants from the Swedish Natural Sciences Research Council, the European Union through the EUROSPAN project (contract no. LSHG-CT-2006-018947), the Foundation for Strategic Research (SSF) and the Linneaus Centre for Bioinformatics (LCB). We are also grateful for the contribution of samples from the Medical Biobank in Umeå and for the contribution of the district nurse Svea Hennix in the Karesuando study. RS-I. The Rotterdam Study. The GWA study was funded by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012), the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Consortium for Healthy Aging (NCHA) project nr. 050-060-810. We thank Pascal Arp, Mila Jhamai, Dr Michael 40 Moorhouse, Marijn Verkerk, and Sander Bervoets for their help in creating the GWAS database. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are very grateful to the participants and staff from the Rotterdam Study, the participating general practitioners and the pharmacists. We would like to thank Dr. Tobias A. Knoch, Luc V. de Zeeuw, Anis Abuseiris, and Rob de Graaf as well as their institutions the Erasmus Computing Grid, Rotterdam, The Netherlands, and especially the national German MediGRID and Services@MediGRID part of the German D-Grid, both funded by the German Bundesministerium fuer Forschung und Technology under grants #01 AK 803 A-H and # 01 IG 07015 G, for access to their grid resources. Abbas Dehghan is supported by NWO grant (vici, 918-76-619). SAPALDIA. Swiss Study on Air Pollution and Lung Diseases in Adults. The SAPALDIA Team: Study directorate: T Rochat (p), NM Probst Hensch (e/g), N Künzli (e/exp), C Schindler (s), JM Gaspoz (c) Scientific team: JC Barthélémy (c), W Berger (g), R Bettschart (p), A Bircher (a), O Brändli (p), C Brombach (n), M Brutsche (p), L Burdet (p), M Frey (p), U Frey (pd), MW Gerbase (p), D Gold (e/c/p), E de Groot (c), W Karrer (p), R Keller (p), B Martin (pa), D Miedinger (o), U Neu (exp), L Nicod (p), M Pons (p), F Roche (c), T Rothe (p), E Russi (p), P Schmid-Grendelmeyer (a), A Schmidt-Trucksäss (pa), A Turk (p), J Schwartz (e), D. Stolz (p), P Straehl (exp), JM Tschopp (p), A von Eckardstein (cc), E Zemp Stutz (e). Scientific team at coordinating centers: M Adam (e/g), C Autenrieth (pa), PO Bridevaux (p), D Carballo (c), E Corradi (exp), I Curjuric (e), J Dratva (e), A Di Pasquale (s), E Dupuis Lozeron (s), E Fischer (e), M Germond (s), L Grize (s), D Keidel (s), S Kriemler (pa), A Kumar (g), M Imboden (g), N Maire (s), A Mehta (e), H Phuleria (exp), E Schaffner (s), GA Thun (g) A Ineichen (exp), M Ragettli (e), M Ritter (exp), T Schikowski (e), M Tarantino (s), M Tsai (exp) (a) allergology, (c) cardiology, (cc) clinical chemistry, (e) epidemiology, (exp) exposure, (g) genetic and molecular biology, (m) meteorology, (n) nutrition, (o) occupational health, (p) pneumology, (pa) physical activity, (pd) pediatrics, (s) statistics. Funding: The Swiss National Science Foundation (grants no 33CSCO-134276/1, 33CSCO-108796, 3247BO-104283, 3247BO-104288, 3247BO- 104284, 3247-065896, 3100-059302, 3200-052720, 3200-042532, 4026-028099), the Federal Office for Forest, Environment and Landscape, the Federal Office of Public Health, the Federal Office of Roads and Transport, the canton's government of Aargau, Basel-Stadt, Basel-Land, Geneva, Luzern, Ticino, Valais, and Zürich, the Swiss Lung League, the canton's Lung League of Basel Stadt/ Basel Landschaft, Geneva, Ticino, Valais and Zurich, SUVA, Freiwillige Akademische Gesellschaft, UBS Wealth Foundation, Talecris Biotherapeutics GmbH, Abbott Diagnostics, European Commission 018996 (GABRIEL), Wellcome Trust WT 084703MA. The study could not have been done without the help of the study participants, technical and administrative support and the medical teams and field workers at the local study sites. Local fieldworkers : Aarau: S Brun, G Giger, M Sperisen, M Stahel, Basel: C Bürli, C Dahler, N Oertli, I Harreh, F Karrer, G Novicic, N Wyttenbacher, Davos: A Saner, P Senn, R Winzeler, Geneva: F Bonfils, B Blicharz, C Landolt, J Rochat, Lugano: S Boccia, E Gehrig, MT Mandia, G Solari, B Viscardi, Montana: AP Bieri, C Darioly, M Maire, Payerne: F Ding, P Danieli A Vonnez, Wald: D Bodmer, E Hochstrasser, R Kunz, C Meier, J Rakic, U Schafroth, A Walder. Administrative staff: C Gabriel, R Gutknecht. SHIP and SHIP-TREND. The Study of Health in Pomerania. SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania, and the network 41 'Greifswald Approach to Individualized Medicine (GANI_MED)' funded by the Federal Ministry of Education and Research (grant 03IS2061A). Genome-wide data have been supported by the Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant from Siemens Healthcare, Erlangen, Germany and the Federal State of Mecklenburg- West Pomerania. The University of Greifswald is a member of the 'Center of Knowledge Interchange' program of the Siemens AG and the Caché Campus program of the InterSystems GmbH. The SHIP authors are grateful to Mario Stanke for the opportunity to use his Server Cluster for the SNP imputation as well as to Holger Prokisch and Thomas Meitinger (Helmholtz Zentrum München) for the genotyping of the SHIP-TREND cohort. TRAILS. TRacking Adolescents' Individual Lives. Trails is a collaborative project involving various departments of the University Medical Center and University of Groningen, the Erasmus University Medical Center Rotterdam, the University of Utrecht, the Radboud Medical Center Nijmegen, and the Parnassia Bavo group, all in the Netherlands. TRAILS has been financially supported by grants from the Netherlands Organization for Scientific Research NWO (Medical Research Council program grant GB-MW 940-38-011; ZonMW Brainpower grant 100-001-004; ZonMw Risk Behavior and Dependence grants 60- 60600-98-018 and 60-60600-97-118; ZonMw Culture and Health grant 261-98-710; Social Sciences Council medium-sized investment grants GB-MaGW 480-01-006 and GB-MaGW 480-07-001; Social Sciences Council project grants GB-MaGW 457-03-018, GB-MaGW 452-04-314, and GB-MaGW 452-06- 004; NWO large-sized investment grant 175.010.2003.005; NWO Longitudinal Survey and Panel Funding 481-08-013); the Sophia Foundation for Medical Research (projects 301 and 393), the Dutch Ministry of Justice (WODC), the European Science Foundation (EuroSTRESS project FP-006), and the participating universities. We are grateful to all adolescents, their parents and teachers who participated in this research and to everyone who worked on this project and made it possible. Statistical analyses were carried out on the Genetic Cluster Computer (http://www.geneticcluster.org), which is financially supported by the Netherlands Scientific Organization (NWO 480-05-003) along with a supplement from the Dutch Brain Foundation. WGHS. Women's Genome Health Study. The WGHS is supported by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with collaborative scientific support and funding for genotyping provided by Amgen. YFS. Young Finns Study. The YFS has been financially supported by the Academy of Finland: grants 134309 (Eye), 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), and 41071 (Skidi), the Social Insurance Institution of Finland, Kuopio, Tampere and Turku University Hospital Medical Funds (grant 9M048 and 9N035 for TeLeht), Juho Vainio Foundation, Paavo Nurmi Foundation, Finnish Foundation of Cardiovascular Research and Finnish Cultural Foundation, Tampere Tuberculosis Foundation and Emil Aaltonen Foundation (T.L). The technical assistance in the statistical analyses by Ville Aalto and Irina Lisinen is acknowledged. ; Peer Reviewed
BASE