Sustaining a plasma in a magnetron discharge requires energization of the plasma electrons. In this work, Ohmic heating of electrons outside the cathode sheath is demonstrated to be typically of the same order as sheath energization, and a simple physical explanation is given. We propose a generalized Thornton equation that includes both sheath energization and Ohmic heating of electrons. The secondary electron emission yield gamma(SE) is identified as the key parameter determining the relative importance of the two processes. For a conventional 5 cm diameter planar dc magnetron, Ohmic heating is found to be more important than sheath energization for secondary electron emission yields below around 0.1. ; Funding Agencies|Swedish Research Council (VR) [621-2014-4882]; Icelandic Research Fund [130029]; Swedish Government Agency for Innovation Systems (VINNOVA) [2014-04876]
Population densities of excited states of argon atoms in a high power impulse magnetron sputtering (HiPIMS) discharge are examined using a global discharge model and a collisional-radiative model. Here, the ionization region model (IRM) and the Orsay Boltzmann equation for electrons coupled with ionization and excited states kinetics (OBELIX) model are combined to obtain the population densities of the excited levels of the argon atom in a HiPIMS discharge. The IRM is a global plasma chemistry model based on particle and energy conservation of HiPIMS discharges. OBELIX is a collisional-radiative model where the electron energy distribution is calculated self-consistently from an isotropic Boltzmann equation. The collisional model constitutes 65 individual and effective excited levels of the argon atom. We demonstrate that the reduced population density of high-lying excited argon states scales with (p*)(-6), where p * is the effective quantum number, indicating the presence of a multistep ladder-like excitation scheme, also called an excitation saturation. The reason for this is the dominance of electron impact processes in the population and de-population of high-lying argon states in combination with a negligible electron-ion recombination. ; Funding Agencies|Free State of Saxony; European Regional Development FundEuropean Commission [100336119]; Icelandic Research Fund [196141]; Swedish Research CouncilSwedish Research CouncilEuropean Commission [VR 2018-04139]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]
The magnetic field is a key feature that distinguishes magnetron sputtering from simple diode sputtering. It effectively increases the residence time of electrons close to the cathode surface and by that increases the energy efficiency of the discharge. This becomes apparent in high power impulse magnetron sputtering (HiPIMS) discharges, as small changes in the magnetic field can result in large variations in the discharge characteristics, notably the peak discharge current and/or the discharge voltage during a pulse. Here, we analyze the influence of the magnetic field on the electron density and temperature, how the discharge voltage is split between the cathode sheath and the ionization region, and the electron heating mechanism in a HiPIMS discharge. We relate the results to the energy efficiency of the discharge and discuss them in terms of the probability of target species ionization. The energy efficiency of the discharge is related to the fraction of pulse power absorbed by the electrons. Ohmic heating of electrons in the ionization region leads to higher energy efficiency than electron energization in the sheath. We find that the electron density and ionization probability of the sputtered species depend largely on the discharge current. The results suggest ways to adjust electron density and electron temperature using the discharge current and the magnetic field, respectively, and how they influence the ionization probability. ; Funding Agencies|Free State of Saxony; European Regional Development FundEuropean Commission [100336119]; Icelandic Research Fund [196141]; Swedish Research CouncilSwedish Research CouncilEuropean Commission [VR 2018-04139]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]
The lower deposition rate for high power impulse magnetron sputtering (HiPIMS) compared with direct current magnetron sputtering for the same average power is often reported as a drawback. The often invoked reason is back-attraction of ionized sputtered material to the target due to a substantial negative potential profile, sometimes called an extended presheath, from the location of ionization toward the cathode. Recent studies in HiPIMS devices, using floating-emitting and swept-Langmuir probes, show that such extended potential profiles do exist, and that the electric fields E-z directed toward the target can be strong enough to seriously reduce ion transport to the substrate. However, they also show that the potential drops involved can vary by up to an order of magnitude from case to case. There is a clear need to understand the underlying mechanisms and identify the key discharge variables that can be used for minimizing the back-attraction. We here present a combined theoretical and experimental analysis of the problem of electric fields E-z in the ionization region part of HiPIMS discharges, and their effect on the transport of ionized sputtered material. In particular, we have investigated the possibility of a sweet spot in parameter space in which the back-attraction of ionized sputtered material is low. It is concluded that a sweet spot might possibly exist for some carefully optimized discharges, but probably in a rather narrow window of parameters. As a measure of how far a discharge is from such a window, a Townsend product Pi(Townsend) is proposed. A parametric analysis of Pi(Townsend) shows that the search for a sweet spot is complicated by the fact that contradictory demands appear for several of the externally controllable parameters such as high/low working gas pressure, short/long pulse length, high/low pulse power and high/low magnetic field strength. ; Funding Agencies|Swedish Research Council||Swedish Foundation for Strategic Research||European Collaboration in Science and Technology (COST Action)|MP0804|ANR HiPPoPP (French Government Research Agency)||Romanian ministry of Education, Research, Youth and Sport|IDEI 540/2009|
The ionization region model (IRM) is applied to model a high power impulse magnetron sputtering discharge in argon with a graphite target. Using the IRM, the temporal variation of the various species and the average electron energy, as well as internal parameters such as the ionization probability, back-attraction probability, and the ionized flux fraction of the sputtered species, is determined. It is found that thedischarge develops into working gas recycling and most of the discharge current at the cathode target surface is composed of Ar+ ions, which constitute over 90% of the discharge current, while the contribution of the C+ ions is always small (92%), and the ionized flux fraction is about 2%. It is concluded that in the operation range studied here it is a challenge to ionize carbon atoms, that are sputtered off of a graphite target in a magnetron sputtering discharge, when depositing amorphous carbon films. ; Funding Agencies|Free State of Saxony; European Regional Development FundEuropean Commission [100336119]; Icelandic Research Fund [196141]; Swedish Research CouncilSwedish Research CouncilEuropean Commission [VR 201804139]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]