IGNNITION: Bridging the gap between graph neural networks and networking systems
Recent years have seen the vast potential of graph neural networks (GNN) in many fields where data is structured as graphs (e.g., chemistry, recommender systems). In particular, GNNs are becoming increasingly popular in the field of networking, as graphs are intrinsically present at many levels (e.g., topology, routing). The main novelty of GNNs is their ability to generalize to other networks unseen during training, which is an essential feature for developing practical machine learning (ML) solutions for networking. However, implementing a functional GNN prototype is currently a cumbersome task that requires strong skills in neural network programming. This poses an important barrier to network engineers that often do not have the necessary ML expertise. In this article, we present IGNNITION, a novel open source framework that enables fast prototyping of GNNs for networking systems. IGNNITION is based on an intuitive high-level abstraction that hides the complexity behind GNNs, while still offering great flexibility to build custom GNN architectures. To showcase the versatility and performance of this framework, we implement two state-of-the-art GNN models applied to different networking use cases. Our results show that the GNN models produced by IGNNITION are equivalent in terms of accuracy and performance to their native implementations in TensorFlow. ; This open source project has received funding from the European Union's Horizon 2020 research and innovation programme within the framework of the NGI-POINTER Project funded under grant agreement No. 871528. This article reflects only the author's view; the European Commission is not responsible for any use that may be made of the information it contains. The work was also supported by the Spanish MINECO under contract TEC2017-90034-C2-1-R (ALLIANCE) and the Catalan Institution for Research and Advanced Studies (ICREA) ; Peer Reviewed ; Postprint (author's final draft)