The global meter-level shape model of comet 67P/Churyumov-Gerasimenko
Full list of authors: Preusker, F.; Scholten, F.; Matz, K. -D.; Roatsch, T.; Hviid, S. F.; Mottola, S.; Knollenberg, J.; Kührt, E.; Pajola, M.; Oklay, N.; Vincent, J. -B.; Davidsson, B.; A'Hearn, M. F.; Agarwal, J.; Barbieri, C.; Barucci, M. A.; Bertaux, J. -L.; Bertini, I.; Cremonese, G.; Da Deppo, V. Debei, S.; De Cecco, M.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Güttler, C.; Ip, W. -H.; Jorda, L.; Keller, H. U.; Koschny, D.; Kramm, J. R.; Küppers, M.; Lamy, P.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Massironi, M.; Naletto, G.; Rickman, H.; Rodrigo, R.; Sierks, H.; Thomas, N.; Tubiana, C. ; We performed a stereo-photogrammetric (SPG) analysis of more than 1500 Rosetta/OSIRIS NAC images of comet 67P/Churyumov-Gerasimenko (67P). The images with pixel scales in the range 0.2-3.0 m/pixel were acquired between August 2014 and February 2016. We finally derived a global high-resolution 3D description of 67P's surface, the SPG SHAP7 shape model. It consists of about 44 million facets (1-1.5 m horizontal sampling) and a typical vertical accuracy at the decimeter scale. Although some images were taken after perihelion, the SPG SHAP7 shape model can be considered a pre-periheliondescription and replaces the previous SPG SHAP4S shape model. From the new shape model, some measures for 67P with very low 3σ uncertainties can be retrieved: 18.56 km ± 0.02 km for the volume and 537.8 kg/m ± 0.7 kg/m for the mean density assuming a mass value of 9.982 × 10 kg. © ESO, 2017. ; OSIRIS was built by a consortium of the Max-Planck-Institut fur Sonnensystemforschung, Gottingen, Germany, CISAS - University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofisica de Andalucia, CSIC, Granada, Spain, the Research and Scientific Support Department of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain, the Universidad Politechnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut fur Datentechnik und Kommunikationsnetze der Technischen Universitat Braunschweig, Germany. The support of the national funding agencies of Germany (DLR), France (CNES), Italy (ASI), Spain (MEC), Sweden (SNSB), and the ESA Technical Directorate is gratefully acknowledged. This work has also received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 686709 (MiARD).