A field study of the adoption of software process innovations by information systems professionals
In: IEEE transactions on engineering management: EM ; a publication of the IEEE Engineering Management Society, Band 47, Heft 3, S. 295-308
9 Ergebnisse
Sortierung:
In: IEEE transactions on engineering management: EM ; a publication of the IEEE Engineering Management Society, Band 47, Heft 3, S. 295-308
In: The international journal of social psychiatry, Band 52, Heft 1, S. 65-71
ISSN: 1741-2854
Background: Inefficient civil registration systems, non-report of deaths, variable standards in certifying death and the legal and social consequences of suicide are major obstacles to investigating suicide in the developing world. Objective: The aim of this study was to prospectively determine the suicide rate in Kaniyambadi Block, Tamil Nadu, South India, for the years 2000–2002 using verbal autopsies. Method: The setting for the study was a comprehensive community health programme in a development block in rural South India. The main outcome measure was death by suicide, diagnosed by a detailed verbal autopsy and census, and birth and death data to identify the population base. Results: The average suicide rate was 92.1 per 100,000. The ratio of male to female suicides was 1: 0.66. The age-specific suicide rate for men increased with age while that for women showed two peaks: 15–24 years and over 65 years of age. Hanging (49%) and poisoning with organo-phosphorus compounds (40.5%) were the commonest methods of committing suicide. Acute and/or chronic stress was elicited for nearly all subjects. More men suffered from chronic stress while more women had acute precipitating events (X2 4.58; p < 0.04). People less than 44 years of age had more acute precipitating events before death while older subjects reported more chronic stress (X2=17.38; p < 0.001). Conclusion: The study replicates findings of an earlier study from the area. The suicide rate documented in this study is very high and is a major public health concern. There is a need for sentinel centres in India and in developing countries to monitor trends and to develop innovative strategies to reduce deaths by suicide.
In: Defence science journal: DSJ, Band 45, Heft 3, S. 237-242
ISSN: 0011-748X
United States National Science Foundation (NSF) ; Science and Technology Facilities Council (STFC) of the United Kingdom ; Max-Planck-Society (MPS) ; State of Niedersachsen/Germany ; Australian Research Council ; International Science Linkages program of the Commonwealth of Australia ; Council of Scientific and Industrial Research of India ; Department of Science and Technology, India ; Science & Engineering Research Board (SERB), India ; Ministry of Human Resource Development, India ; Spanish Ministerio de Economia y Competitividad ; Conselleria d'Economia i Competitivitat and Conselleria d'Educaci, Cultura i Universitats of the Govern de les Illes Balears ; Foundation for Fundamental Research on Matter - Netherlands Organization for Scientific Research ; Polish Ministry of Science and Higher Education ; FOCUS Programme of Foundation for Polish Science ; European Union ; Royal Society ; Scottish Funding Council ; Scottish Universities Physics Alliance ; National Aeronautics and Space Administration ; Hungarian Scientific Research Fund (OTKA) ; Lyon Institute of Origins (LIO) ; National Research Foundation of Korea ; Industry Canada ; Province of Ontario through the Ministry of Economic Development and Innovation ; National Science and Engineering Research Council Canada ; Brazilian Ministry of Science, Technology, and Innovation ; Carnegie Trust ; Leverhulme Trust ; David and Lucile Packard Foundation ; Research Corporation ; Alfred P. Sloan Foundation ; NSF ; STFC ; MPS ; INFN ; CNRS ; Science and Technology Facilities Council ; Science and Technology Facilities Council: ST/L000938/1 ; Science and Technology Facilities Council: ST/I006285/1 ; Science and Technology Facilities Council: ST/I006269/1 ; Science and Technology Facilities Council: ST/L000946/1 ; Science and Technology Facilities Council: ST/L000962/1 ; Science and Technology Facilities Council: ST/L003465/1 ; Science and Technology Facilities Council: ST/K000845/1 ; Science and Technology Facilities Council: ST/J00166X/1 ; Science and Technology Facilities Council: ST/L000911/1 Gravitational Waves ; Science and Technology Facilities Council: Gravitational Waves ; Science and Technology Facilities Council: PPA/G/S/2002/00652 ; Science and Technology Facilities Council: ST/I006269/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L000911/1 ; Science and Technology Facilities Council: 1362895 ; Science and Technology Facilities Council: ST/I006277/1 ; Science and Technology Facilities Council: ST/H002359/1 ; Science and Technology Facilities Council: ST/K005014/1 ; Science and Technology Facilities Council: ST/K00137X/1 ; Science and Technology Facilities Council: ST/M006735/1 ; Science and Technology Facilities Council: ST/M000931/1 ; Science and Technology Facilities Council: ST/L000938/1 Gravitational Waves ; We describe directed searches for continuous gravitational waves (GWs) in data from the sixth Laser Interferometer Gravitational-wave Observatory (LIGO) science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target ' s parameters are uncertain enough to warrant two searches, for a total of 10. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering. -statistic. We found no evidence of GW signals. We set 95% confidence upper limits as strong (low) as 4 x 10(-25) on intrinsic strain, 2 x 10(-7) on fiducial ellipticity, and 4 x 10(-5) on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.
BASE
United States National Science Foundation (NSF) ; Science and Technology Facilities Council (STFC) of the United Kingdom ; Max-Planck-Society (MPS) ; State of Niedersachsen/Germany ; Italian Istituto Nazionale di Fisica Nucleare (INFN) ; French Centre National de la Recherche Scientifique (CNRS) ; Australian Research Council ; International Science Linkages program of the Commonwealth of Australia ; Council of Scientific and Industrial Research of India ; Department of Science and Technology, India ; Science & Engineering Research Board (SERB), India ; Ministry of Human Resource Development, India ; Spanish Ministerio de Economia y Competitividad ; Conselleria d'Economia i Competitivitat and Conselleria d'Educaci, Cultura i Universitats of the Govern de les Illes Balears ; Netherlands Organisation for Scientific Research ; National Science Centre of Poland ; European Union ; Royal Society ; Scottish Funding Council ; Scottish Universities Physics Alliance ; National Aeronautics and Space Administration ; Hungarian Scientific Research Fund (OTKA) ; Lyon Institute of Origins (LIO) ; National Research Foundation of Korea ; Industry Canada ; Province of Ontario through the Ministry of Economic Development and Innovation ; Natural Science and Engineering Research Council, Canada ; Brazilian Ministry of Science, Technology, and Innovation ; Carnegie Trust ; Leverhulme Trust ; David and Lucile Packard Foundation ; Research Corporation ; Alfred P. Sloan Foundation ; NSF ; STFC ; MPS ; INFN ; CNRS ; Science and Technology Facilities Council ; Science and Technology Facilities Council: ST/L000938/1 Gravitational Waves ; Science and Technology Facilities Council: 1362895 ; Science and Technology Facilities Council: ST/L000962/1 ; Science and Technology Facilities Council: ST/I006285/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L003465/1 ; Science and Technology Facilities Council: ST/L000962/1 Gravitational Waves ; Science and Technology Facilities Council: ST/I006285/1 ; Science and Technology Facilities Council: ST/I006242/1 Gravitational Waves ; Science and Technology Facilities Council: ST/J000019/1 ; Science and Technology Facilities Council: ST/N00003X/1 ; Science and Technology Facilities Council: ST/L000946/1 ; Science and Technology Facilities Council: ST/N000064/1 ; Science and Technology Facilities Council: ST/L000954/1 Gravitational Waves ; Science and Technology Facilities Council: ST/K000845/1 ; Science and Technology Facilities Council: ST/I006269/1 ; Science and Technology Facilities Council: ST/L000938/1 ; Science and Technology Facilities Council: Gravitational Waves ; Science and Technology Facilities Council: ST/K005014/1 ; Science and Technology Facilities Council: ST/I006269/1 Gravitational Waves ; We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4 x 10(-5) and 9.4 x 10(-4) Mpc(-3) yr(-1) at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves.
BASE
Advanced LIGO ; Science and Technology Facilities Council (STFC) of the United Kingdom ; Australian Research Council ; Council of Scientific and Industrial Research of India, Department of Science and Technology, India ; Science & Engineering Research Board (SERB), India ; Ministry of Human Resource Development, India ; Spanish Ministerio de Economia y Competitividad ; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio, Cultura i Universitats of the Govern de les Illes Balears ; National Science Centre of Poland ; FOCUS Programme of Foundation for Polish Science ; European Union ; Royal Society ; Scottish Funding Council ; Scottish Universities Physics Alliance ; Lyon Institute of Origins (LIO) ; National Research Foundation of Korea ; Industry Canada ; Province of Ontario through the Ministry of Economic Development and Innovation ; National Science and Engineering Research Council Canada ; Brazilian Ministry of Science, Technology, and Innovation ; Research Corporation, Ministry of Science and Technology (MOST), Taiwan ; Kavli Foundation ; Science and Technology Facilities Council ; Science and Technology Facilities Council: ST/L000954/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L000946/1 ; Science and Technology Facilities Council: ST/I006269/1 Gravitational Waves ; Science and Technology Facilities Council: ST/I006242/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L003465/1 ; Science and Technology Facilities Council: ST/J000019/1 ; Science and Technology Facilities Council: ST/N000072/1 ; Science and Technology Facilities Council: ST/K000845/1 ; Science and Technology Facilities Council: ST/I006269/1 ; Science and Technology Facilities Council: ST/N000633/1 ; Science and Technology Facilities Council: ST/M000931/1 ; Science and Technology Facilities Council: ST/K005014/1 ; Science and Technology Facilities Council: PPA/G/S/2002/00652 ; Science and Technology Facilities Council: Gravitational Waves ; Science and Technology Facilities Council: ST/N00003X/1 ; We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg(2) to 20 deg(2) will require at least three detectors of sensitivity within a factor of similar to 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
BASE
Australian Research Council ; International Science Linkages program of the Commonwealth of Australia ; Council of Scientific and Industrial Research of India, Department of Science and Technology, India ; Science and Engineering Research Board, India ; Ministry of Human Resource Development, India ; Spanish Ministerio de Economia y Competitividad ; Conselleria d'Economia i Competitivitat ; Cultura i Universitats of the Govern de les Illes Balears ; Foundation for Fundamental Research on Matter - Netherlands Organisation for Scientific Research ; National Science Centre of Poland ; European Union ; Royal Society ; Scottish Funding Council ; Scottish Universities Physics Alliance ; National Aeronautics and Space Administration ; Hungarian Scientific Research Fund ; Lyon Institute of Origins ; National Research Foundation of Korea ; Industry Canada ; Province of Ontario through the Ministry of Economic Development and Innovation ; National Science and Engineering Research Council Canada ; Brazilian Ministry of Science, Technology, and Innovation ; Carnegie Trust ; Leverhulme Trust ; David and Lucile Packard Foundation ; Research Corporation ; Alfred P. Sloan Foundation ; Conselleria d'Educacio ; Science and Technology Facilities Council ; Science and Technology Facilities Council: ST/L000962/1 Gravitational Waves ; Science and Technology Facilities Council: 1362895 ; Science and Technology Facilities Council: ST/I006285/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L000938/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L000962/1 ; Science and Technology Facilities Council: ST/K000845/1 ; Science and Technology Facilities Council: Gravitational Waves ; Science and Technology Facilities Council: ST/K005014/1 ; Science and Technology Facilities Council: ST/L003465/1 ; Science and Technology Facilities Council: ST/L000938/1 ; Science and Technology Facilities Council: ST/N000064/1 ; Science and Technology Facilities Council: ST/L000946/1 ; Science and Technology Facilities Council: ST/L000954/1 Gravitational Waves ; Science and Technology Facilities Council: ST/I006269/1 Gravitational Waves ; Science and Technology Facilities Council: ST/I006269/1 ; Science and Technology Facilities Council: ST/J000019/1 ; Science and Technology Facilities Council: ST/I006242/1 Gravitational Waves ; In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0 x 10(-10) and +1.5 x 10(-11) Hz/s, and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the Frequency Hough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the Frequency Hough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 10(-24) and 2 x 10(-23) at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of similar to 2 with respect to the results of previous all-sky searches at frequencies below 80 Hz.
BASE
United States National Science Foundation (NSF) ; Science and Technology Facilities Council (STFC) of the United Kingdom ; MaxPlanck- Society (MPS) ; State of Niedersachsen/Germany ; Australian Research Council ; Netherlands Organisation for Scientific Research ; EGO consortium ; Council of Scientific and Industrial Research of India, Department of Science and Technology, India ; Science AMP; Engineering Research Board (SERB), India ; Ministry of Human Resource Development, India ; Spanish Ministerio de Economia y Competitividad ; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears ; National Science Centre of Poland ; European Union ; Royal Society ; Scottish Funding Council ; Scottish Universities Physics Alliance ; Lyon Institute of Origins (LIO) ; National Research Foundation of Korea, Industry Canada ; Province of Ontario through the Ministry of Economic Development and Innovation ; National Science and Engineering Research Council Canada ; Brazilian Ministry of Science, Technology, and Innovation ; Leverhulme Trust ; Research Corporation, Ministry of Science and Technology (MOST), Taiwan ; Kavli Foundation ; NSF ; STFC ; MPS ; INFN ; CNRS ; Science and Technology Facilities Council ; State of Niedersachsen/Germany: GEO600 ; Science and Technology Facilities Council: ST/K005014/1 ; Science and Technology Facilities Council: ST/L000938/1 Gravitational Waves ; Science and Technology Facilities Council: ST/N000072/1 ; Science and Technology Facilities Council: PPA/G/S/2002/00652 ; Science and Technology Facilities Council: ST/I006269/1 ; Science and Technology Facilities Council: ST/L000962/1 ; Science and Technology Facilities Council: ST/J00166X/1 ; Science and Technology Facilities Council: ST/M006735/1 ; Science and Technology Facilities Council: ST/I006285/1 Gravitational Waves ; Science and Technology Facilities Council: ST/J000019/1 Gravitational Waves ; Science and Technology Facilities Council: ST/I006285/1 ; Science and Technology Facilities Council: ST/J000019/1 ; Science and Technology Facilities Council: 1362895 ; Science and Technology Facilities Council: ST/M000931/1 ; Science and Technology Facilities Council: ST/L000962/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L000938/1 ; Science and Technology Facilities Council: ST/K000845/1 ; Science and Technology Facilities Council: ST/I006242/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L003465/1 ; Science and Technology Facilities Council: ST/G504284/1 ; Science and Technology Facilities Council: ST/I006269/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L000954/1 Gravitational Waves ; Science and Technology Facilities Council: ST/N00003X/1 ; Science and Technology Facilities Council: Gravitational Waves ; Science and Technology Facilities Council: ST/N000633/1 ; Science and Technology Facilities Council: ST/L000946/1 ; The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (greater than or similar to 25M(circle dot)) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (greater than or similar to 1 Gpc(-3) yr(-1)) from both types of formation models. The low measured redshift (z similar or equal to 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.
BASE
United States National Science Foundation (NSF) ; Science and Technology Facilities Council (STFC) of the United Kingdom ; Max-Planck Society ; State of Niedersachsen/Germany ; Australian Research Council ; Netherlands Organisation for Scientific Research ; EGO consortium ; Council of Scientific and Industrial Research of India ; Department of Science and Technology, India ; Science & Engineering Research Board (SERB), India ; Ministry of Human Resource Development, India ; Spanish Ministerio de Economia y Competitividad ; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears ; National Science Centre of Poland ; European Commission ; Royal Society ; Scottish Funding Council ; Scottish Universities Physics Alliance ; Hungarian Scientific Research Fund (OTKA) ; Lyon Institute of Origins (LIO) ; National Research Foundation of Korea ; Industry Canada ; Province of Ontario through Ministry of Economic Development and Innovation ; National Science and Engineering Research Council Canada ; Canadian Institute for Advanced Research ; Brazilian Ministry of Science, Technology, and Innovation ; Russian Foundation for Basic Research ; Leverhulme Trust ; Research Corporation ; Ministry of Science and Technology (MOST), Taiwan ; Kavli Foundation ; Australian Government ; National Collaborative Research Infrastructure Strategy ; Government of Western Australia ; United States Department of Energy ; United States National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Funding Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at the Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Financiadora de Estudos e Projetos ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Collaborating Institutions in the Dark Energy Survey ; National Science Foundation ; MINECO ; Centro de Excelencia Severo Ochoa ; European Research Council under European Union's Seventh Framework Programme ; ERC ; NASA (United States) ; DOE (United States) ; IN2P3/CNRS (France) ; CEA/Irfu (France) ; ASI (Italy) ; INFN (Italy) ; MEXT (Japan) ; KEK (Japan) ; JAXA (Japan) ; Wallenberg Foundation ; Swedish Research Council ; National Space Board (Sweden) ; NASA in the United States ; DRL in Germany ; INAF for the project Gravitational Wave Astronomy with the first detections of adLIGO and adVIRGO experiments ; ESA (Denmark) ; ESA (France) ; ESA (Germany) ; ESA (Italy) ; ESA (Switzerland) ; ESA (Spain) ; German INTEGRAL through DLR grant ; US under NASA Grant ; National Science Foundation PIRE program grant ; Hubble Fellowship ; KAKENHI of MEXT Japan ; JSPS ; Optical and Near-Infrared Astronomy Inter-University Cooperation Program - MEXT ; UK Science and Technology Facilities Council ; ERC Advanced Investigator Grant ; Lomonosov Moscow State University Development programm ; Moscow Union OPTICA ; Russian Science Foundation ; National Research Foundation of South Africa ; Australian Government Department of Industry and Science and Department of Education (National Collaborative Research Infrastructure Strategy: NCRIS) ; NVIDIA at Harvard University ; University of Hawaii ; National Aeronautics and Space Administration's Planetary Defense Office ; Queen's University Belfast ; National Aeronautics and Space Administration through Planetary Science Division of the NASA Science Mission Directorate ; European Research Council under European Union's Seventh Framework Programme/ERC ; STFC grants ; European Union FP7 programme through ERC ; STFC through an Ernest Rutherford Fellowship ; FONDECYT ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) ; NASA in the US ; UK Space Agency in the UK ; Agenzia Spaziale Italiana (ASI) in Italy ; Ministerio de Ciencia y Tecnologia (MinCyT) ; Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET) from Argentina ; USA NSF PHYS ; NSF ; ICREA ; Science and Technology Facilities Council ; UK Space Agency ; National Science Foundation: AST-1138766 ; National Science Foundation: AST-1238877 ; MINECO: AYA2012-39559 ; MINECO: ESP2013-48274 ; MINECO: FPA2013-47986 ; Centro de Excelencia Severo Ochoa: SEV-2012-0234 ; ERC: 240672 ; ERC: 291329 ; ERC: 306478 ; German INTEGRAL through DLR grant: 50 OG 1101 ; US under NASA Grant: NNX15AU74G ; National Science Foundation PIRE program grant: 1545949 ; Hubble Fellowship: HST-HF-51325.01 ; KAKENHI of MEXT Japan: 24103003 ; KAKENHI of MEXT Japan: 15H00774 ; KAKENHI of MEXT Japan: 15H00788 ; JSPS: 15H02069 ; JSPS: 15H02075 ; ERC Advanced Investigator Grant: 267697 ; Russian Science Foundation: 16-12-00085 ; Russian Science Foundation: RFBR15-02-07875 ; National Aeronautics and Space Administration's Planetary Defense Office: NNX14AM74G ; National Aeronautics and Space Administration through Planetary Science Division of the NASA Science Mission Directorate: NNX08AR22G ; European Research Council under European Union's Seventh Framework Programme/ERC: 291222 ; STFC grants: ST/I001123/1 ; STFC grants: ST/L000709/1 ; European Union FP7 programme through ERC: 320360 ; FONDECYT: 3140326 ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO): CE110001020 ; USA NSF PHYS: 1156600 ; NSF: 1242090 ; Science and Technology Facilities Council: Gravitational Waves ; Science and Technology Facilities Council: ST/L000946/1 ; Science and Technology Facilities Council: ST/K005014/1 ; Science and Technology Facilities Council: ST/N000668/1 ; Science and Technology Facilities Council: ST/M000966/1 ; Science and Technology Facilities Council: ST/I006269/1 ; Science and Technology Facilities Council: ST/L000709/1 ; Science and Technology Facilities Council: ST/J00166X/1 ; Science and Technology Facilities Council: ST/K000845/1 ; Science and Technology Facilities Council: ST/K00090X/1 ; Science and Technology Facilities Council: ST/N000633/1 ; Science and Technology Facilities Council: ST/H001972/1 ; Science and Technology Facilities Council: ST/L000733/1 ; Science and Technology Facilities Council: ST/N000757/1 ; Science and Technology Facilities Council: ST/M001334/1 ; Science and Technology Facilities Council: ST/J000019/1 ; Science and Technology Facilities Council: ST/M003035/1 ; Science and Technology Facilities Council: ST/I001123/1 ; Science and Technology Facilities Council: ST/N00003X/1 ; Science and Technology Facilities Council: ST/I006269/1 Gravitational Waves ; Science and Technology Facilities Council: ST/N000072/1 ; Science and Technology Facilities Council: ST/L003465/1 ; UK Space Agency: ST/P002196/1 ; This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.
BASE