The VVDS: Early Results on the Large Scale Structure Distribution of Galaxies out to z~1.5
In: Multiwavelength Mapping of Galaxy Formation and Evolution; ESO Astrophysics Symposia, S. 222-229
5 Ergebnisse
Sortierung:
In: Multiwavelength Mapping of Galaxy Formation and Evolution; ESO Astrophysics Symposia, S. 222-229
Context. In metric theories of gravity with photon number conservation, the luminosity and angular diameter distances are related via the Etherington relation, also known as the distance duality relation (DDR). A violation of this relation would rule out the standard cosmological paradigm and point to the presence of new physics.Aims. We quantify the ability of Euclid, in combination with contemporary surveys, to improve the current constraints on deviations from the DDR in the redshift range 0< z< 1.6.Methods. We start with an analysis of the latest available data, improving previously reported constraints by a factor of 2.5. We then present a detailed analysis of simulated Euclid and external data products, using both standard parametric methods (relying on phenomenological descriptions of possible DDR violations) and a machine learning reconstruction using genetic algorithms.Results. We find that for parametric methods Euclid can (in combination with external probes) improve current constraints by approximately a factor of six, while for non-parametric methods Euclid can improve current constraints by a factor of three.Conclusions. Our results highlight the importance of surveys like Euclid in accurately testing the pillars of the current cosmological paradigm and constraining physics beyond the standard cosmological model. ; La Caixa Foundation 100010434 LCF/BQ/PI19/11690015 Spanish Agencia Estatal de Investigacion through the grant "IFT Centro de Excelencia Severo Ochoa" SEV-2016-0597 FEDER -Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 -Operational Programme for Competitiveness and Internationalisation (POCI) Portuguese funds through FCT -Fundacao para a Ciencia e a Tecnologia POCI-01-0145-FEDER-028987 Centro de Excelencia Severo Ochoa Program SEV-2016-059 Spanish Government RYC-2014-15843 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1200171 Spanish Ministry of Science, Innovation and Universities ESP2017-89838-C3-1-R H2020 programme of the European Commission 776247 UK Research & Innovation (UKRI) Science & Technology Facilities Council (STFC) Science and Technology Development Fund (STDF) ST/P000703/1 European Research Council (ERC) 769130 Academy of Finland European Commission Agenzia Spaziale Italiana (ASI) Belgian Federal Science Policy Office Canadian Euclid Consortium Centre National D'etudes Spatiales Helmholtz Association German Aerospace Centre (DLR) Danish Space Research Institute Portuguese Foundation for Science and Technology European Commission Spanish Government National Aeronautics & Space Administration (NASA) Netherlandse Onderzoekschool Voor Astronomie Norwegian Space Agency Romanian Space Agency State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space O ffice (SSO) United Kingdom Space Agency PGC2018-094773-B-C32
BASE
The Complete Calibration of the Colour-Redshift Relation survey (C3R2) is a spectroscopic e ffort involving ESO and Keck facilities designed specifically to empirically calibrate the galaxy colour-redshift relation - P(z jC) to the Euclid depth (iAB = 24 :5) and is intimately linked to the success of upcoming Stage IV dark energy missions based on weak lensing cosmology. The aim is to build a spectroscopic calibration sample that is as representative as possible of the galaxies of the Euclid weak lensing sample. In order to minimise the number of spectroscopic observations necessary to fill the gaps in current knowledge of the P(z jC), self-organising map (SOM) representations of the galaxy colour space have been constructed. Here we present the first results of an ESO@VLT Large Programme approved in the context of C3R2, which makes use of the two VLT optical and near-infrared multi-object spectrographs, FORS2 and KMOS. This data release paper focuses on high-quality spectroscopic redshifts of high-redshift galaxies observed with the KMOS spectrograph in the near-infrared H- and K-bands. A total of 424 highly-reliable redshifts are measured in the 1:3 2 galaxies. ; European Space Agency European Commission Academy of Finland European Commission Agenzia Spaziale Italiana (ASI) Belgian Federal Science Policy Office Canadian Euclid Consortium Centre National D'etudes Spatiales Helmholtz Association German Aerospace Centre (DLR) Danish Space Research Institute Fundacao para a Cienca e a Tecnologia Spanish Government National Aeronautics & Space Administration (NASA) Netherlandse Onderzoekschool Voor Astronomie Norvegian Space Center Romanian Space Agency State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO) United Kingdom Space Agency ESO programme 199.A-0732 Helmholtz Association German Aerospace Centre (DLR) 50 QE 1101 Spanish Ministry of Science, Innovation and Universities ESP2017-89838-C3-1-R H2020 programme of the European Commission 776247 Swiss National Science Foundation (SNSF) European Commission PRIN MIUR 2015 "Cosmology and Fundamental Physics: Illuminating the Dark Universe with Euclid"
BASE
Aims. The Euclid space telescope will measure the shapes and redshifts of galaxies to reconstruct the expansion history of the Universe and the growth of cosmic structures. The estimation of the expected performance of the experiment, in terms of predicted constraints on cosmological parameters, has so far relied on various individual methodologies and numerical implementations, which were developed for different observational probes and for the combination thereof. In this paper we present validated forecasts, which combine both theoretical and observational ingredients for different cosmological probes. This work is presented to provide the community with reliable numerical codes and methods for Euclid cosmological forecasts.Methods. We describe in detail the methods adopted for Fisher matrix forecasts, which were applied to galaxy clustering, weak lensing, and the combination thereof. We estimated the required accuracy for Euclid forecasts and outline a methodology for their development. We then compare and improve different numerical implementations, reaching uncertainties on the errors of cosmological parameters that are less than the required precision in all cases. Furthermore, we provide details on the validated implementations, some of which are made publicly available, in different programming languages, together with a reference training-set of input and output matrices for a set of specific models. These can be used by the reader to validate their own implementations if required.Results. We present new cosmological forecasts for Euclid. We find that results depend on the specific cosmological model and remaining freedom in each setting, for example flat or non-flat spatial cosmologies, or different cuts at non-linear scales. The numerical implementations are now reliable for these settings. We present the results for an optimistic and a pessimistic choice for these types of settings. We demonstrate that the impact of cross-correlations is particularly relevant for models beyond a cosmological constant and may allow us to increase the dark energy figure of merit by at least a factor of three. ; Academy of Finland European Commission Agenzia Spaziale Italiana (ASI) Belgian Federal Science Policy Office Canadian Euclid Consortium Centre National D'etudes Spatiales Deutsches Zentrum fur Luft-and Raumfahrt Danish Space Research Institute Fundacao para a Cienca e a Tecnologia Spanish Government National Aeronautics & Space Administration (NASA) 80NM0018D0004 Netherlandse Onderzoekschool Voor Astronomie Norvegian Space Center Romanian Space Agency State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space O ffice (SSO) United Kingdom Space Agency Ministry of Education, Universities and Research (MIUR) Ministry of Education, Universities and Research (MIUR) L. 232/2016 European Research Council through the Darklight Advanced Research Grant 291521 Ministry of Education, Universities and Research (MIUR) Centre National D'etudes Spatiales Fonds de la Recherche Scientifique - FNRS Swiss National Science Foundation (SNSF) European Commission NASA ROSES grant 12-EUCLID12-0004 UK Science & Technology Facilities Council ST/N000668/1 ST/S000437/1 UK Space Agency ST/N00180X/1 D-ITP consortium, a program of the NWO - the OCW Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1200171 Spanish Ministry of Science, Innovation and Universities ESP2017-89838-C3-1-R H2020 programme of the European Commission 776247 German Research Foundation (DFG) Transregio 33 International Max Planck Research School for Astronomy and Astrophysics at the University of Bonn International Max Planck Research School for Astronomy and Astrophysics at the University of Cologne Bonn-Cologne Graduate School for Physics and Astronomy Royal Society of London European Research Council (ERC) 617656
BASE
Forthcoming large photometric surveys for cosmology require precise and accurate photometric redshift (photo-z) measurements for the success of their main science objectives. However, to date, no method has been able to produce photo-zs at the required accuracy using only the broad-band photometry that those surveys will provide. An assessment of the strengths and weaknesses of current methods is a crucial step in the eventual development of an approach to meet this challenge. We report on the performance of 13 photometric redshift code single value redshift estimates and redshift probability distributions (PDZs) on a common set of data, focusing particularly on the 0.2-2.6 redshift range that the Euclid mission will probe. We designed a challenge using emulated Euclid data drawn from three photometric surveys of the COSMOS field. The data was divided into two samples: one calibration sample for which photometry and redshifts were provided to the participants; and the validation sample, containing only the photometry to ensure a blinded test of the methods. Participants were invited to provide a redshift single value estimate and a PDZ for each source in the validation sample, along with a rejection flag that indicates the sources they consider unfit for use in cosmological analyses. The performance of each method was assessed through a set of informative metrics, using cross-matched spectroscopic and highly-accurate photometric redshifts as the ground truth. We show that the rejection criteria set by participants are efficient in removing strong outliers, that is to say sources for which the photo-z deviates by more than 0.15(1+z) from the spectroscopic-redshift (spec-z). We also show that, while all methods are able to provide reliable single value estimates, several machine-learning methods do not manage to produce useful PDZs. We find that no machine-learning method provides good results in the regions of galaxy color-space that are sparsely populated by spectroscopic-redshifts, for example z> 1. However they generally perform better than template-fitting methods at low redshift (z< 0.7), indicating that template-fitting methods do not use all of the information contained in the photometry. We introduce metrics that quantify both photo-z precision and completeness of the samples (post-rejection), since both contribute to the final figure of merit of the science goals of the survey (e.g., cosmic shear from Euclid). Template-fitting methods provide the best results in these metrics, but we show that a combination of template-fitting results and machine-learning results with rejection criteria can outperform any individual method. On this basis, we argue that further work in identifying how to best select between machine-learning and template-fitting approaches for each individual galaxy should be pursued as a priority. ; Sinergia program of the Swiss National Science Foundation German Research Foundation (DFG) Ts 17/2-1 Istituto Nazionale Astrofisica (INAF) Agenzia Spaziale Italiana (ASI) 2018-23-HH.0 1.05.01.88.04 European Space Agency European Commission Agenzia Spaziale Italiana (ASI) Belgian Federal Science Policy Office Canadian Euclid Consortium Centre National D'etudes Spatiales Danish Space Research Institute Portuguese Foundation for Science and Technology European Commission Spanish Government National Aeronautics & Space Administration (NASA) Netherlandse Onderzoekschool Voor Astronomie Norwegian Space Agency Romanian Space Agency State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space O ffice (SSO) United Kingdom Space Agency
BASE