Downregulation of mTOR Signaling Increases Stem Cell Population Telomere Length during Starvation of Immortal Planarians
Reduction of caloric intake delays and prevents age-associated diseases and extends the life span in many organisms. It may be that these benefits are due to positive effects of caloric restriction on stem cell function. We use the planarian model Schmidtea mediterranea, an immortal animal that adapts to long periods of starvation by shrinking in size, to investigate the effects of starvation on telomere length. We show that the longest telomeres are a general signature of planarian adult stem cells. We also observe that starvation leads to an enrichment of stem cells with the longest telomeres and that this enrichment is dependent on mTOR signaling. We propose that one important effect of starvation for the rejuvenation of the adult stem cell pool is through increasing the median telomere length in somatic stem cells. Such a mechanism has broad implications for how dietary effects on aging are mediated at the whole-organism level. González-Estévez and colleagues show that long telomeres are a signature of planarian stem cells. They find that in the immortal planarian, starvation leads to an enrichment of stem cells with the longest telomeres dependent on mTOR signaling. They propose that starvation contributes to the rejuvenation of the adult stem cell pool by increasing their telomere length. ; We would also like to thank E. Arza and A.M. Santos from the CNIC Microscopy Unit and also J. Solana, C. Martín-Durán, R. Romero, L. Sastre, E.G. Arias-Salgado, and all past and current members in the C.G.-E. and I.F. labs. C.G.-E. was funded by a Contrato de Investigadores Miguel Servet (CP12/03214) and by the FLI. The FLI is a member of the Leibniz Association and is financially supported by the Federal Government of Germany and the State of Thuringia. O.G.-G. was funded by an LGSA scholarship. R.P. and B.F.-V. were funded by a grant (PI17-01401) from Fondo de Investigaciones Sanitarias (Instituto de Salud Carlos III, Spain) and FEDER funds. I.F. was funded by grants from Ministerio de Ciencia, Innovación y Universidades (SAF2016-80406-R), Comunidad de Madrid (S2017/BMD-3875), and the Red Temática de Investigación Cooperativa en Enfermedades Cardiovasculares (RD12/0042/0045). The CNIC is supported by the Ministerio de Ciencia, Innovación y Universidades and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). A.A.A. was funded by grants from the BBSRC (BB/K007564/1) and MRC (MR/M000133/1), and S.S. by a University of Oxford Clarendon Fund Scholarship.