Genetic Susceptibility Loci for Cardiovascular Disease and Their Impact on Atherosclerotic Plaques
The Data Supplement is available at https://www.ahajournals.org/doi/suppl/10.1161/CIRCGEN.118.002115 ; BACKGROUND: Atherosclerosis is a chronic inflammatory disease in part caused by lipid uptake in the vascular wall, but the exact underlying mechanisms leading to acute myocardial infarction and stroke remain poorly understood. Large consortia identified genetic susceptibility loci that associate with large artery ischemic stroke and coronary artery disease. However, deciphering their underlying mechanisms are challenging. Histological studies identified destabilizing characteristics in human atherosclerotic plaques that associate with clinical outcome. To what extent established susceptibility loci for large artery ischemic stroke and coronary artery disease relate to plaque characteristics is thus far unknown but may point to novel mechanisms. METHODS: We studied the associations of 61 established cardiovascular risk loci with 7 histological plaque characteristics assessed in 1443 carotid plaque specimens from the Athero-Express Biobank Study. We also assessed if the genotyped cardiovascular risk loci impact the tissue-specific gene expression in 2 independent biobanks, Biobank of Karolinska Endarterectomy and Stockholm Atherosclerosis Gene Expression. RESULTS: A total of 21 established risk variants (out of 61) nominally associated to a plaque characteristic. One variant (rs12539895, risk allele A) at 7q22 associated to a reduction of intraplaque fat, P=5.09×10-6 after correction for multiple testing. We further characterized this 7q22 Locus and show tissue-specific effects of rs12539895 on HBP1 expression in plaques and COG5 expression in whole blood and provide data from public resources showing an association with decreased LDL (low-density lipoprotein) and increase HDL (high-density lipoprotein) in the blood. CONCLUSIONS: Our study supports the view that cardiovascular susceptibility loci may exert their effect by influencing the atherosclerotic plaque characteristics. ; Dr van der Laan is funded through grants from the Netherlands CardioVascular Research Initiative of the Netherlands Heart Foundation (CVON 2011/B019 and CVON 2017-20: Generating the best evidence-based pharmaceutical targets for atherosclerosis [GENIUS I&II]) and the Interuniversity Cardiology Institute of the Netherlands (ICIN, 09.001). Drs van der Laan and Haitjema are both funded through the FP7 EU project CVgenes@target (HEALTH-F2-2013–601456). Dr Siemelink is funded by the European Union (BiomarCaRE, grant number: HEALTH-2011–278913), and the technology foundation Stichting voor de Technische Wetenschappen through the Danone partnership program (Project 11679). The UCL Hospitals NIHR Biomedical Research Centre and the Dutch Heart Foundation (Junior Staff Member 2014T001) supported by Dr Asselbergs. The BiKE study was conducted with support from the Swedish Heart and Lung Foundation, the Swedish Research Council (K2009-65X-2233-01-3, K2013-65X-06816-30-4, and 349-2007-8703), Uppdrag Besegra Stroke (P581/2011–123), the Strategic Cardiovascular Programs of Karolinska Institutet and Stockholm County Council, the Stockholm County Council (ALF2011-0260 and ALF-2011-0279), the Foundation for Strategic Research and the European Commission (CarTarDis). ; Peer-reviewed ; Publisher Version