To describe the health effects of the political system in Zaïre on asylum seekers seen at the Medical Foundation for the Care of Victims of Torture a retrospective study was performed of the records of 92 asylum seekers from Zaïre who were seen for medical reports at the medical foundation in 1993 and 1994. Eighty one had been imprisoned; the others had been severely treated at home by the security services. Sixty six had been detained for up to one year. Prison conditions were invariably unsanitary, and food of poor quality when provided. All had been beaten on arrest, and all but two had been beaten repeatedly in prison. Nearly all the women and some of the men described sexual abuse. Almost all left prison through bribery or because a guard had a similar background. Seventy two asylum seekers had scarring, consider to be consistent with the history, and 70 were considered to have suffered persistent psychological damage. Asylum seekers from Zaïre will have health effects from experiences unimaginable to the ordinary Briton. An understanding of the background will help clinicians manage them.
Extragalactic astronomy.-- et al. ; The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M 31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spiralarms and sub-features. We examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M 31. We find that dust dominating the longer wavelength emission (≳0.3 mm) is heated by the diffuse stellar population (as traced by 3.6 μm emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24 μm emission). We also fit spectral energy distributions for individual 5′ pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22 K in the nucleus to 14 K outside of the 10 kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of (18.2 ± 1.0) K with a spectral index of 1.62 ± 0.11 (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20–60 GHz, which corresponds to a star formation rate of around 0.12 M⊙ yr-1. We find a 2.3σ detection of the presence of spinning dust emission, with a 30 GHz amplitude of 0.7 ± 0.3 Jy, which is in line with expectations from our Galaxy. ; The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 307209, as well as funding from an STFC Consolidated Grant (No. ST/L000768/1). The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). ; Peer Reviewed
Anomalous Microwave Emission (AME) is a significant component of Galactic diffuse emission in the frequency range 10–60GHz and a new window into the properties of sub-nanometre-sized grains in the interstellar medium. We investigate the morphology of AME in the ≈10○ diameter λ Orionis ring by combining intensity data from the QUIJOTE experiment at 11, 13, 17, and 19GHz and the C-Band All Sky Survey (C-BASS) at 4.76GHz, together with 19 ancillary data sets between 1.42 and 3000GHz. Maps of physical parameters at 1○ resolution are produced through Markov chain Monte Carlo (MCMC) fits of spectral energy distributions (SEDs), approximating the AME component with a lognormal distribution. AME is detected in excess of 20σ at degree-scales around the entirety of the ring along photodissociation regions (PDRs), with three primary bright regions containing dark clouds. A radial decrease is observed in the AME peak frequency from ≈35GHz near the free–free region to ≈21GHz in the outer regions of the ring, which is the first detection of AME spectral variations across a single region. A strong correlation between AME peak frequency, emission measure and dust temperature is an indication for the dependence of the AME peak frequency on the local radiation field. The AME amplitude normalized by the optical depth is also strongly correlated with the radiation field, giving an overall picture consistent with spinning dust where the local radiation field plays a key role. ; Partial financial support for QUIJOTE is provided by the Spanish Ministry of Economy and Competitiveness (MINECO) under the projects AYA2007-68058-C03-01, AYA2010-21766-C03-02, AYA2014-60438-P, AYA2017-84185-P, IACA13-3E-2336, IACA15-BE-3707, and EQC2018-004918-P; Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER, UE), under projects ESP2017-83921-C2-1-R and AYA2017-90675-REDC; the European Union's Horizon 2020 research and innovation programme under grant agreement number 687312 (RADIOFORE; FP acknowledges support from the Spanish Ministerio de Ciencia, Innovación y Universidades (MICINN) under grant numbers ESP2015-65597-C4-4-R, ESP2017-86852-C4-2-R, ESP2015-65597-C4-4-R, and ESP2017-86852-C4-2-R. GROUNDS) and number 658499 (PolAME); Unidad de Excelencia María de Maeztu (MDM-2017-0765) ; Peer reviewed