An EM algorithm for absolutely continuous Marshall-Olkin bivariate Pareto distribution with location and scale
In: Communications in statistics. Simulation and computation, S. 1-24
ISSN: 1532-4141
19 Ergebnisse
Sortierung:
In: Communications in statistics. Simulation and computation, S. 1-24
ISSN: 1532-4141
SSRN
The development of fully-inorganic thin flexible materials is important for flexible thermoelectric applications in a wide temperature range, such as harvesting power from hot curved surfaces (e.g. hot pipes). Here, we investigate the thermoelectric properties of a series of ZnO:Ga,Al thin films with varying dopant concentration deposited on flexible mica substrate by atmospheric pressure metalorganic chemical vapor deposition. The films are bendable, while sustaining the high power factor, above 1 x 10(-4)Wm(-1)K(-2) for singly doped Zn0.99Ga0.01O film in a wide temperature range, from room temperature to 400 degrees C. IMPACT STATEMENTFor the first time we demonstrate here that ZnO-film-on-mica can be a promising n-type candidate for fully-inorganic flexible thermoelectrics, especially, for applications at elevated temperatures [GRAPHICS] ; Funding Agencies|European Research Council (ERC) under the European Community [335383]; Swedish Research Council (VR) [2016-03365]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [SFO-Mat-LiU 2009 00971]; Knut and Alice Wallenberg foundation through the Academy Fellow program; Swedish Foundation for Strategic Research (SSF) through the Future Research Leaders 5 program; Swedish Research Council (VR) Marie Sklodowska Curie International Career Grant [2015-00679]; AForsk [14-517]
BASE
In: ENBENV-D-24-00039
SSRN
Flexible ternary carbon black/Bi2Te3 based alloy/polylactic acid (CB/BTBA/PLA) composites were fabricated by additive manufacturing and their thermoelectric properties were investigated from 300 K to 360 K. At 300 K, as the mass ratios of BTBAs in the composites increased from 38.5% to 71.4%, both the electrical conductivity and Seebeck coefficient of the composites increased from 5.8 S/cm to 13.3 S/cm, and from 60.2 mV/K to 119.9 mV/K, respectively, and the thermal conductivity slightly increased from 0.15 W m(-1)K(-1) to 0.25 W m(-1)K(-1), as a result, the ZT value of the composites increased from 0.004 to 0.023. As the temperature increased from 300 K to 360 K, the electrical conductivity of all the composites slightly decreased, while the thermal conductivity slowly increased, and a highest ZT value of 0.024 was achieved for the composites with 71.4% BTBAs at 320 K. Unlike traditional sterolithography, fused deposition modeling, selective laser melting, etc., this additive manufacturing process can directly print the solutions which contain inorganic fillers and polymer matrixes into almost any designed intricate geometries of thermoelectric composites, therefore this process has great potential to be used for fabrication of flexible polymer based thermoelectric composites and devices. (C) 2020 The Chinese Ceramic Society. Production and hosting by Elsevier B.V. ; Funding Agencies|Shanghai Innovation Action Plan Project [17090503600]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China [11811530636, 61504081, 61611530550]; Program for Professor of Special Appointment (Young Eastern Scholar Program) at Shanghai Institutions of Higher Learning [QD2015039]; Swedish Research CouncilSwedish Research Council [2016-3365]; Swedish Energy AgencySwedish Energy Agency [46519-1]; Knut and Alice Wallenberg Foundation through the Wallenberg Academy Fellows program; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]
BASE
In: Materials and design, Band 210, S. 110033
ISSN: 1873-4197
The layered cobaltates A(x)CoO(2) (A = Li, Na, Ca, Ba, Sr) are of interest for energy applications such as thermoelectrics and batteries. However, it is challenging to obtain these phases in pure from as thin films. Here, phase-pure CaxCoO2 (x similar to 0.5) thin films were obtained by annealing of Ca(OH)(2)/Co3O4 multilayers made by moisture treatment of sputter-deposited CaO/Co3O4 multilayer films. The pure CaxCoO2 thin films exhibit an average optical transmittance of approximately 36% in the visible region and greater than 70% in the near-infrared (NIR) region. In addition, the electrical conductivity can be increased by incorporating a secondary Ca3Co4O9 phase into the CaxCoO2 thin film without large changes in optical properties and Seebeck coefficient. (C) 2021 The Authors. Published by Elsevier Ltd. ; Funding Agencies|Knut and Alice Wallenberg Foundation through the Wallenberg Academy Fellows program [KAW 2020.0196]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [200900971]; Swedish Energy AgencySwedish Energy Agency [46519-1]; China Scholarship CouncilChina Scholarship Council
BASE
We demonstrate a ligand-free green chemical method for the rapid growth of nanoporous Ca0.35CoO2 thin films on sapphire and mica substrates from a water-based precursor ink, formulated by dissolving the precursor solid, composed of in situ prepared Ca2+-DMF and Co2+-DMF complexes. Mica serves as the flexible substrate as well as the sacrificial layer for the film transfer. Despite the presence of nanopores, the power factor of the flexible film Ca0.35CoO2-on-mica is above 0.50 x 10(-4) W m(-1) K-2 at around room temperature. The present technique is simple and cost-effective. ; Funding Agencies|Science and Engineering Research Board, the DST "GPU", Government of India [SERB/1759/2014-15]; Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [2016R1D1A1B03931391]; Aforsk foundation [17-578]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]
BASE
Thin films in the aluminosilicate (AlSiO) system containing up to 31 at. % Al and 23 at. % Si were prepared by reactive RF magnetron co-sputtering in order to investigate the dependence of film formation and optical properties on substrate temperature and Si and Al contents. The obtained films were amorphous with smooth microstructure. The growth rate at different substrate temperatures ranged from 1.2 to 3.3 nm/min and increase with increasing the Si target power. The roughness decreases and thickness increases with increasing Si content. The thickness of the films grown at a deposition temperature of 100 °C is found to be higher than the films deposited at 300 and 500 °C. The AlSiO-coated glasses have a higher transmission in the visible region than the uncoated glass. The spectroscopic ellipsometry analysis reveals that the refractive index value decreased with decreasing the Al content, having extinction coefficient values of zero in the measured spectral region and band gap values ≥ 3.4 eV. The obtained thin films have over 90% transmittance in the visible range and no systematic variation of transmittance was observed with substrate temperature. The results suggest that glass substrate coated with AlSiO thin films have improved optical properties. ; Fulltext published with Attribution 4.0 International (CC BY 4.0) license. https://creativecommons.org/licenses/by/4.0/ No changes to PDF. Funding: VinnovaVinnova [2015-04809]; AForsk foundation [14-457]; Knut and Alice Wallenberg Foundation through the Wallenberg Academy Fellows program; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]
BASE
This study shows an approach to combine a high electrical conductivity of one composite layer with a high Seebeck coefficient of another composite layer in a double-layer composite, resulting in high thermoelectric power factor. Flexible double-layer-composites, made from Bi2Te3-based-alloy/polylactic acid (BTBA/PLA) composites and Ag/PLA composites, are synthesized by solution additive manufacturing. With the increase in Ag volume-ratio from 26.3% to 41.7% in Ag/PLA layers, the conductivity of the double-layer composites increases from 12 S cm(-1)to 1170 S cm(-1), while the Seebeck coefficient remains approximate to 80 mu V K(-1)at 300 K. With further increase in volume ratio of Ag until 45.6% in Ag/PLA composite layer, the electrical conductivity of the double-layer composites increases to 1710 S cm(-1), however, with a slight decrease of the Seebeck coefficient to 64 mu V K-1. The electrical conductivity and Seebeck coefficient vary only to a limited extent with the temperature. The high Seebeck coefficient is due to scattering of low energy charge carriers across compositionally graded interfaces. A power factor of 875 mu W m(-1) K(-2)is achieved at 360 K for 41.7 vol.% Ag in the Ag/PLA layers. Solution additive manufacturing can directly print this double-layer composite into intricate geometries, making this process is promising for large-scale fabrication of thermoelectric composites. ; Funding Agencies|Shanghai Innovation Action Plan Project [17090503600]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China [11811530636, 61504081, 61611530550]; Program for Professor of Special Appointment (Young Eastern Scholar Program) at Shanghai Institutions of Higher Learning [QD2015039]; Swedish Research Council (VR)Swedish Research Council [2016-3365]; Swedish Energy AgencySwedish Energy Agency [46519-1]; Knut and Alice Wallenberg Foundation through the Wallenberg Academy Fellows program; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]
BASE
Ca-Si-O-N thin films were deposited on commercial soda-lime silicate float glass, silica wafers and sapphire substrates by RF magnetron co-sputtering from Ca and Si targets in an Ar/N-2/O-2 gas mixture. Chemical composition, surface morphology, hardness, reduced elastic modulus and optical properties of the films were investigated using X-ray photoelectron spectroscopy, scanning electron microscopy, nanoindentation, and spectroscopic ellipsometry. It was found that the composition of the films can be controlled by the Ca target power, predominantly, and by the reactive gas flow. Thin films in the Ca-Si-O-N system are composed of N and Ca contents up to 31 eq. % and 60 eq. %, respectively. The films thickness ranges from 600 to 3000 nm and increases with increasing Ca target power. The films surface roughness varied between 2 and 12 nm, and approximately decreases with increasing power of Ca target. The hardness (4-12 GPa) and reduced elastic modulus (65-145 GPa) of the films increase and decrease with the N and Ca contents respectively. The refractive index (1.56-1.82) is primarily dictated by the N content. The properties are compared with findings for bulk glasses in the Ca-Si-(Al)-O-N systems, and it is concluded that Ca-Si-O-N thin films have higher values of hardness, elastic modulus and refractive index than bulk glasses of similar composition. (C) 2017 Elsevier B.V. All rights reserved. ; Funding Agencies|AForsk Foundation [14-457]; Vinnova [2015-04809]; European Research Council under the European Commission Seventh Framework Programme (FP)/ERC [335383]; Swedish Foundation for Strategic Research (SSF) through the Future Research Leaders 5 Program; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University Faculty Grant SFO Mat LiU [2009 00971]
BASE
In this work, amorphous thin films in Mg-Si-O-N system typically containing amp;gt; 15 at.% Mg and 35 at.% N were prepared in order to investigate especially the dependence of optical and mechanical properties on Mg composition. Reactive RF magnetron co-sputtering from magnesium and silicon targets were used for the deposition of Mg-Si-O-N thin films. Films were deposited on float glass, silica wafers and sapphire substrates in an Ar, N-2 and O-2 gas mixture. X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, spectroscopic ellipsometry, and nanoindentation were employed to characterize the composition, surface morphology, and properties of the films. The films consist of N and Mg contents up to 40 at.% and 28 at.%, respectively and have good adhesion to substrates and are chemically inert. The thickness and roughness of the films increased with increasing content of Mg. Both hardness (16-21 GPa) and reduced elastic modulus (120-176 GPa) are strongly correlated with the amount of Mg content. The refractive index up to 2.01 and extinction coefficient up to 0.18 were found to increase with Mg content. The optical band gap (3.1-4.3) decreases with increasing the Mg content. Thin film deposited at substrate temperature of 100 degrees C shows a lower value of hardness (10 GPa), refractive index (1.75), and higher values of reduced elastic modulus (124 GPa) as compared to the thin film deposited at 310 degrees C and 510 degrees C respectively, under identical synthesis parameters. ; Funding Agencies|VINNOVA [2015-04809]; AForsk Foundation [14-457]; European Research Council under the European Community/ERC [335383]; Swedish Foundation for Strategic Research (SSF); Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]
BASE
There is an increasing demand for glass materials with better mechanical and optical properties for display and electronic applications. This paper describes the deposition of novel thin films of Mg-circle divide-Si-O-N onto float glass substrates. Amorphous thin films in the Mg-Si-O-N system with high nitrogen and magnesium contents were deposited by reactive RF magnetron co-sputtering from Mg and Si targets in Ar/N-2/O-2 gas mixtures. The thin films studied span an unprecedented range of compositions up to 45 at% Mg and 80 at% N out of cations and anions respectively. Thin films in the Mg-Si-O-N system were found to be homogeneous and transparent in the visible region. Mechanical properties like hardness (H) and reduced elastic modulus (Er) show high values, up to 21 GPa and 166 GPa respectively. The refractive index (1.87-2.00) increases with increasing magnesium and nitrogen contents. (C) 2016 Elsevier Ltd. All rights reserved. ; Funding Agencies|AForsk foundation [14- 457]; European Research Council under the European Communitys Seventh Framework Programme (FP)/ERC grant [335383]; Swedish Foundation for Strategic Research (SSF) through the Future Research Leaders 5 Program; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University Faculty Grant SFO Mat LiU [2009 00971]
BASE
Introducing porosity is attractive for tailoring electronic, thermal, and mechanical properties of inorganic materials. Nanoporosity is typically either inherent in crystallographic channels in the structure or obtained by external templating during synthesis and sintering. However, controllably engineering porosity in materials with laminated crystal structures without channels remains a challenge. Here, we demonstrate the realization of faceted and oriented nanopores in textured Ca3Co4O9-a laminated ceramic with a misfit-layered structure of importance for thermoelectric applications-from chemical reactions in CaO/Co3O4 multilayers. We show that CaO conversion to Ca(OH)(2) and the cobalt oxide stoichiometry are key determinants of nanoporosity. Adjusting the unreacted CaO fraction alters the nanopore size and fraction and the thermoelectric properties of Ca3Co4O9. The preferred orientation of Ca3Co4O9 is underpinned by the texture of the reactant multilayers and reactant-product crystallographic relationships and density difference. Oriented pore formation is attributed to basal plane removal driven by local densification of textured Ca3Co4O9 nuclei through growth and impingement. These findings point to possibilities for controllably engineering nanoporosity and properties in a variety of inorganic materials with laminated crystal structures. ; Funding Agencies|Knut and Alice Wallenberg Foundation through the Wallenberg Academy Fellows program [KAW 2020.0196]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]; Swedish Energy AgencySwedish Energy AgencyMaterials & Energy Research Center (MERC) [46519-1]; China Scholarship CouncilChina Scholarship Council
BASE
A two-step synthesis approach was utilized to grow CaMnO3 on M-, R- and C-plane sapphire substrates. Radio-frequency reactive magnetron sputtering was used to grow rock-salt-structured (Ca, Mn)O followed by a 3-h annealing step at 800 degrees C in oxygen flow to form the distorted perovskite phase CaMnO3. The effect of temperature in the post-annealing step was investigated using x-ray diffraction. The phase transformation to CaMnO3 started at 450 degrees C and was completed at 550 degrees C. Films grown on R- and C-plane sapphire showed similar structure with a mixed orientation, whereas the film grown on M-plane sapphire was epitaxially grown with an out-of-plane orientation in the [202] direction. The thermoelectric characterization showed that the film grown on M-plane sapphire has about 3.5 times lower resistivity compared to the other films with a resistivity of 0.077cm at 500 degrees C. The difference in resistivity is a result from difference in crystal structure, single orientation for M-plane sapphire compared to mixed for R- and C-plane sapphire. The highest absolute Seebeck coefficient value is -350 mu VK-1 for all films and is decreasing with temperature. ; Funding Agencies|Swedish Foundation for Strategic Research (SSF) through the Future Research Leaders 5 program; Swedish Research Council (VR) [2016-03365]; Knut and Alice Wallenberg Foundation through the Wallenberg Academy Fellows program; European Research Council under the European Communitys Seventh Framework Programme (FP7 = 2007-2013) ERC Grant [335383]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]
BASE