Chronic obstructive pulmonary disease (COPD) results in high morbidity and mortality among patients both domestically and globally. The Korean clinical practice guideline for COPD was revised in 2014. It was drafted by the members of the Korean Academy of Tuberculosis and Respiratory Diseases, as well as participating members of the Health Insurance Review and Assessment Service, Korean Physicians' Association, and Korea Respiration Trouble Association. This revised guideline covers a wide range of topics, including the epidemiology, diagnosis, assessment, monitoring, management, exacerbation, and comorbidities of COPD in Korea. We drafted a guideline on COPD management by performing systematic reviews on the topic of management with the help of a meta-analysis expert. We expect this guideline will be helpful medical doctors treating patients with respiratory conditions, other health care professionals, and government personnel in South Korea.
Yong Suk Jo,1 Sung Kyoung Kim,2 Seoung Ju Park,3 Soo-Jung Um,4 Yong-Bum Park,5 Ki Suck Jung,6 Deog Kyeom Kim,7 Kwang Ha Yoo8 1Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea; 2Department of Internal Medicine, Division of Pulmonology, St Vincent's Hospital, The Catholic University of Korea, Seoul, Republic of Korea; 3Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea; 4Department of Internal Medicine, Division of Pulmonology, Dong-A University Hospital, Busan, Republic of Korea; 5Department of Internal Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Republic of Korea; 6Department of Internal Medicine, Division of Pulmonary Medicine, Hallym University Sacred Heart Hospital, Hallym University Medical School, Anyang, Republic of Korea; 7Department of Internal Medicine, Seoul Metropolitan Government, Seoul National University Boramae Medical Center, Seoul, Republic of Korea; 8Department of Internal Medicine, Division of Pulmonary and Allergy Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea Background and objective: FEV1 is the gold standard for assessment of COPD. We compared efficacy of FEV1, inspiratory capacity (IC), and IC to total lung capacity (TLC) ratio in the evaluation of COPD and their association with exacerbation.Methods: We analyzed the association of dyspnea severity, quality of life status, and lung function with lung function measurements and exacerbation risk in 982 patients enrolled in the Korea COPD Subgroup Registry and Subtype Research study. Exacerbation and longitudinal lung function change were evaluated in 3 years' follow-up.Results: The FEV1, IC, and IC to TLC ratio showed comparable negative correlations with dyspnea severity and quality of life status, and positive correlation with exercise capacity. In patients with >2 events/year, annual rate of change in FEV1 and IC tended to decline more rapidly in those with FEV1 50% (-14.46±19.40 mL/year vs 12.29±9.24 mL/year, P=0.213; -4.75±17.28 mL/year vs -78.05±34.16 mL/year, P=0.056 for FEV1 and IC, respectively), without significance.Conclusion: Longitudinal changes in IC and FEV1 were not significantly associated with exacerbation risk. Keywords: COPD, exacerbation, FEV1, inspiratory capacity
Chronic obstructive pulmonary disease (COPD) results in high morbidity and mortality among patients nationally and globally. The Korean clinical practice guideline for COPD was revised in 2018. The guideline was drafted by the members of the Korean Academy of Tuberculosis and Respiratory Diseases as well as the participating members of the Health Insurance Review and Assessment Service, Korean Physicians' Association, and Korea Respiration Trouble Association. The revised guideline encompasses a wide range of topics, including the epidemiology, diagnosis, assessment, monitoring, management, exacerbation, and comorbidities of COPD in Korea. We performed systematic reviews assisted by an expert in meta-analysis to draft a guideline on COPD management. We expect this guideline to facilitate the treatment of patients with respiratory conditions by physicians as well other health care professionals and government personnel in South Korea.
Jin Hwa Song,1 Chang-Hoon Lee,1 Jin Woo Kim,2 Won-Yeon Lee,3 Ji Ye Jung,4 Joo Hun Park,5 Ki Suck Jung,6 Kwang Ha Yoo,7 Yong Bum Park,8 Deog Keom Kim9 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 2Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 3Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, 4Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, 5Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, 6Division of Pulmonary Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University Medical School, Anyang, Gyeonggi-do, 7Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, 8Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kangdong Sacred Heart Hospital, 9Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea Background: Recent studies that assessed the relevance of the blood eosinophil count as a biomarker in patients with COPD may have overestimated it because they included patients with asthma–COPD overlap syndrome (ACOS). We investigated the clinical implications of the blood eosinophil count in patients with non-ACOS COPD.Patients and methods: From a Korean COPD Subtype Study (KOCOSS) cohort, we selected patients with non-ACOS COPD after excluding ACOS patients according to Spanish criteria. Clinical characteristics and the incidence of moderate-to-severe exacerbation were compared among the four groups stratified according to the quartiles of blood eosinophil percent and count.Results: Of the KOCOSS cohort of 1,132 patients with COPD, 467 non-ACOS COPD patients (41.2%) with data of blood eosinophil count remained after excluding those with ACOS based on the Spanish definition. There was no difference in clinical characteristics among groups classified according to the quartiles of eosinophil percent and count. On multivariate logistic regression, eosinophil quartiles in percent and absolute count were not associated with the incidence of moderate-to-severe acute exacerbations of COPD (AECOPD). The eosinophil count did not affect the risk of AECOPD or forced expiratory volume in 1 second (FEV1) changes according to exposure to inhaled corticosteroid (ICS). However, by increasing the cutoff value for the eosinophil count from 200/µL to 600/µL, the odds ratio for risk of exacerbation increased serially from 0.82 to 2.96 on trend analysis.Conclusion: In patients with non-ACOS COPD, the blood eosinophil count and percent were not associated with FEV1 changes, quality of life (QoL), AECOPD frequency, or response to ICS. The clinical implication of the blood eosinophil count should not be overestimated in patients with non-ACOS COPD. Keywords: eosinophil, chronic obstructive lung disease, asthma, acute exacerbation, inhaled corticosteroid
Jin Hwa Song,1 Chang-Hoon Lee,1 Soo-Jung Um,2 Yong Bum Park,3 Kwang Ha Yoo,4 Ki Suck Jung,5 Sang-Do Lee,6 Yon-Mok Oh,6 Ji Hyun Lee,7 Eun Kyung Kim,7 Deog Kyeom Kim8,9 On behalf of KOLD, KOCOSS, and SNU airway registry investigators 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; 2Division of Respiratory Medicine, Department of Internal Medicine, Dong-A University College of Medicine, Dong-A University Medical Center, Busan, Republic of Korea; 3Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea; 4Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea; 5Division of Pulmonary Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University Medical School, Anyang Gyeonggi-do, Republic of Korea; 6Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Republic of Korea; 7Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam Gyeonggi-do, Republic of Korea; 8Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea; 9Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea Purpose: While GOLD classification has been revised, its clinical impacts on outcomes of COPD patients have not been widely evaluated in real-world cohorts.Materials and methods: According to 2007, 2013, and 2017 GOLD classifications, distribution and clinical characteristics of group-shifted patients and the risk of acute exacerbation were analyzed in combined Korean COPD cohorts. Future risk for annual moderate-to-severe exacerbation was estimated as incidence rate ratio (IRR) and compared by groups.Results: Among 1,880 COPD patients, in GOLD 2017 classification, groups B and A were increased to 61.2% and 22.2% of total population, while group C was shrunken to 2.2% and patients with higher risk were decreased (16.6% in GOLD 2017 vs 44.7% in GOLD 2013). The kappa coefficient of agreement of both systems was 0.581 (agreement 71.7%). Groups B and D showed higher IRR of moderate-to-severe exacerbation than group A (IRR 2.4 and 5.3 respectively, P<0.001), whereas group C was not different from group A. When groups C and D were combined, the IRR for acute exacerbation for each group showed good linear trends (2.5 [1.6–3.7] for group B and 4.8 [3.0–7.7] for combined group [C+D], P<0.001).Conclusions: In the revised GOLD 2017 system, COPD patients with higher risk were much decreased in Korean cohorts, and group C was negligible in size and clinical impacts on expecting future exacerbation. Serial increase in the risk for exacerbation was more concrete and predictable when group C was combined with group D. Keywords: pulmonary disease, chronic obstructive/classification, pulmonary disease, chronic obstructive/diagnosis, chronic obstructive/epidemiology, risk factors, severity of illness index
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial pneumonia, which presents with a progressive worsening dyspnea, and thus a poor outcome. The members of the Korean Academy of Tuberculosis and Respiratory Diseases as well as the participating members of the Korea Interstitial Lung Disease Study Group drafted this clinical practice guideline for IPF management. This guideline includes a wide range of topics, including the epidemiology, pathogenesis, risk factors, clinical features, diagnosis, treatment, prognosis, and acute exacerbation of IPF in Korea. Additionally, we suggested the PICO for the use of pirfenidone and nintendanib and for lung transplantation for the treatment of patients with IPF through a systemic literature review using experts' help in conducting a meta-analysis. We recommend this guideline to physicians, other health care professionals, and government personnel in Korea, to facilitate the treatment of patients with IPF.
Yeon-Mok Oh,1,* Keu Sung Lee,2,* Yoonki Hong,3,* Sung Chul Hwang,2 Jae Yeol Kim,4 Deog Keom Kim,5 Kwang Ha Yoo,6 Ji-Hyun Lee,7 Tae-Hyung Kim,8 Seong Yong Lim,9 Chin Kook Rhee,10 Hyoung Kyu Yoon,11 Sang Yeub Lee,12 Yong Bum Park,13 Jin Hee Jung,14 Woo Jin Kim,3 Sang-Do Lee,1 Joo Hun Park2 1Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; 2Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea; 3Department of Internal Medicine and Environmental Health Center, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea; 4Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea; 5Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea; 6Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea; 7Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea; 8Division of Pulmonology, Department of Internal Medicine, Hanyang University College of Medicine, Guri, Korea; 9Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea; 10Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St Mary's Hospital, Catholic University of Korea, Seoul, Korea; 11Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University Anam Hospital, Seoul, Korea; 12Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University Anam Hospital, Seoul, Korea; 13Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea; 14Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea *These authors contributed equally to this work Background: High blood eosinophil count is a predictive biomarker for response to inhaled corticosteroids in prevention of acute exacerbation of COPD, and low blood eosinophil count is associated with pneumonia risk in COPD patients taking inhaled corticosteroids. However, the prognostic role of blood eosinophil count remains underexplored. Therefore, we investigated the associated factors and mortality based on blood eosinophil count in COPD.Methods: Patients with COPD were recruited from 16 hospitals of the Korean Obstructive Lung Disease cohort (n=395) and COPD in Dusty Area cohort (n=234) of Kangwon University Hospital. The two merged cohorts were divided based on blood eosinophil count into three groups: high (≥5%), middle (2%–5%), and low (<2%).Results: The high group had longer six-minute walk distance (high =445.8±81.4, middle =428.5±88.0, and low =414.7±86.3 m), higher body mass index (23.3±3.1, 23.1±3.1, and 22.5±3.2 kg/m2), lower emphysema index (18.5±14.1, 22.2±15.3, and 23.7±16.3), and higher inspiratory capacity/total lung capacity ratio (32.6±7.4, 32.4±9.2, and 29.9% ± 8.9%) (P<0.05). The survival period increased with increasing blood eosinophil count (high =9.52±0.23, middle =8.47±1.94, and low =7.42±0.27 years, P<0.05). Multivariate linear regression analysis revealed that the emphysema index was independently and negatively correlated with blood eosinophil count (P<0.05).Conclusion: In COPD, the severity of emphysema was independently linked with low blood eosinophil count and the longer survival period was associated with increased blood eosinophil count, though it was not proven in the multivariate analysis. Keywords: blood eosinophil, COPD, biomarker