Lactose-Gated Mesoporous Silica Particles for Intestinal Controlled Delivery of Essential Oil Components: An In Vitro and In Vivo Study
Mesoporous silica microparticles functionalized with lactose for the specific release of essential oil components (EOCs) in the small intestine are presented. In vitro and in vivo intestinal models were applied to validate the microparticles (M41-EOC-L), in which the presence of lactase acts as the triggering stimulus for the controlled release of EOCs. Among the different microdevices prepared (containing thymol, eugenol and cinnamaldehyde), the one loaded with cinnamaldehyde showed the most significant Caco-2 cell viability reduction. On the other hand, interaction of the particles with enterocyte-like monolayers showed a reduction of EOCs permeability when protected into the designed microdevices. Then, a microdevice loaded with cinnamaldehyde was applied in the in vivo model of Wistar rat. The results showed a reduction in cinnamaldehyde plasma levels and an increase in its concentration in the lumen of the gastrointestinal tract (GIT). The absence of payload release in the stomach, the progressive release throughout the intestine and the prolonged stay of the payload in the GIT-lumen increased the bioavailability of the encapsulated compound at the site of the desired action. These innovative results, based on the specific intestinal controlled delivery, suggest that the M41-payload-L could be a potential hybrid microdevice for the protection and administration of bioactive molecules in the small intestine and colon. ; Ministerio de Ciencia, Innovación y Universidades (Spanish Government) )the Agencia Estatal de Investigación (AEI) and European Union (projects RTI2018-100910-B-C41 and RTI2018-101599-B-C22-AR (MCIU/AEI/ FEDER, EU)) ; Ministerio de Universidades (Spanish Government) (BG20/00020, A.B. Beatriz Galindo contract) ; Agencia Estatal de Investigación and European Union through FEDER (Fondo Europeo de Desarrollo Regional, AEI/FEDER EU, project SAF2016-78756) ; Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana (project PROMETEO 2018/024 and E.P-R. predoctoral grant ACIF/2016/023)