Avian Influenza Is a Catalyst for Economic and Political Destabilization in Iran
In: Health security, Band 16, Heft 2, S. 143-143
ISSN: 2326-5108
4 Ergebnisse
Sortierung:
In: Health security, Band 16, Heft 2, S. 143-143
ISSN: 2326-5108
In: Global security: health, science and policy, Band 6, Heft 1, S. 18-25
ISSN: 2377-9497
Ebolaviruses cause an often rapidly fatal syndrome known as Ebola virus disease (EVD), with average case fatality rates of ~50%. There is no licensed vaccine or treatment for EVD, underscoring the urgent need to develop new anti-ebolavirus agents, especially in the face of an ongoing outbreak in the Democratic Republic of the Congo and the largest ever outbreak in Western Africa in 2013–2016. Lectins have been investigated as potential antiviral agents as they bind glycans present on viral surface glycoproteins, but clinical use of them has been slowed by concerns regarding their mitogenicity, i.e. ability to cause immune cell proliferation. We previously engineered a banana lectin (BanLec), a carbohydrate-binding protein, such that it retained antiviral activity but lost mitogenicity by mutating a single amino acid, yielding H84T BanLec (H84T). H84T shows activity against viruses containing high-mannose N-glycans, including influenza A and B, HIV-1 and -2, and hepatitis C virus. Since ebolavirus surface glycoproteins also contain many high-mannose N-glycans, we assessed whether H84T could inhibit ebolavirus replication. H84T inhibited Ebola virus (EBOV) replication in cell cultures. In cells, H84T inhibited both virus-like particle (VLP) entry and transcription/replication of the EBOV mini-genome at high micromolar concentrations, while inhibiting infection by transcription- and replication-competent VLPs, which measures the full viral life cycle, in the low micromolar range. H84T did not inhibit assembly, budding, or release of VLPs. These findings suggest that H84T may exert its anti-ebolavirus effect(s) by blocking both entry and transcription/replication. In a mouse model, H84T partially (maximally, ~50–80%) protected mice from an otherwise lethal mouse-adapted EBOV infection. Interestingly, a single dose of H84T pre-exposure to EBOV protected ~80% of mice. Thus, H84T shows promise as a new anti-ebolavirus agent with potential to be used in combination with vaccination or other agents in a prophylactic or ...
BASE
The task of international expert groups is to recommend the classification and naming of viruses. The ICTV Filoviridae Study Group and other experts have recently established an almost consistent classification and nomenclature for filoviruses. Here, further guidelines are suggested to include their natural genetic variants. First, this term is defined. Second, a template for full-length virus names (such as "Ebola virus H.sapiens-tc/COD/1995/Kikwit-9510621") is proposed. These names contain information on the identity of the virus (e.g., Ebola virus), isolation host (e.g., members of the species Homo sapiens), sampling location (e.g., Democratic Republic of the Congo (COD)), sampling year, genetic variant (e.g., Kikwit), and isolate (e.g., 9510621). Suffixes are proposed for individual names that clarify whether a given genetic variant has been characterized based on passage zero material (-wt), has been passaged in tissue/cell culture (-tc), is known from consensus sequence fragments only (-frag), or does (most likely) not exist anymore (-hist). We suggest that these comprehensive names are to be used specifically in the methods section of publications. Suitable abbreviations, also proposed here, could then be used throughout the text, while the full names could be used again in phylograms, tables, or figures if the contained information aids the interpretation of presented data. The proposed system is very similar to the well-known influenzavirus nomenclature and the nomenclature recently proposed for rotaviruses. If applied consistently, it would considerably simplify retrieval of sequence data from electronic databases and be a first important step toward a viral genome annotation standard as sought by the National Center for Biotechnology Information (NCBI). Furthermore, adoption of this nomenclature would increase the general understanding of filovirus-related publications and presentations and improve figures such as phylograms, alignments, and diagrams. Most importantly, it would counter the increasing ...
BASE