A computer program to calculate the cost of providing ruminants with home-produced feedstuffs
In: Computers and Electronics in Agriculture, Band 19, Heft 1, S. 23-36
5 Ergebnisse
Sortierung:
In: Computers and Electronics in Agriculture, Band 19, Heft 1, S. 23-36
© 2016 Elsevier B.V. Ruminant husbandry is a major source of anthropogenic greenhouse gases (GHG). Filling knowledge gaps and providing expert recommendation are important for defining future research priorities, improving methodologies and establishing science-based GHG mitigation solutions to government and non-governmental organisations, advisory/extension networks, and the ruminant livestock sector. The objectives of this review is to summarize published literature to provide a detailed assessment of the methodologies currently in use for measuring enteric methane (CH4) emission from individual animals under specific conditions, and give recommendations regarding their application. The methods described include respiration chambers and enclosures, sulphur hexafluoride tracer (SF6) technique, and techniques based on short-term measurements of gas concentrations in samples of exhaled air. This includes automated head chambers (e.g. the GreenFeed system), the use of carbon dioxide (CO2) as a marker, and (handheld) laser CH4detection. Each of the techniques are compared and assessed on their capability and limitations, followed by methodology recommendations. It is concluded that there is no 'one size fits all' method for measuring CH4emission by individual animals. Ultimately, the decision as to which method to use should be based on the experimental objectives and resources available. However, the need for high throughput methodology e.g. for screening large numbers of animals for genomic studies, does not justify the use of methods that are inaccurate. All CH4measurement techniques are subject to experimental variation and random errors. Many sources of variation must be considered when measuring CH4concentration in exhaled air samples without a quantitative or at least regular collection rate, or use of a marker to indicate (or adjust) for the proportion of exhaled CH4sampled. Consideration of the number and timing of measurements relative to diurnal patterns of CH4emission and respiratory exchange are important, as well as consideration of feeding patterns and associated patterns of rumen fermentation rate and other aspects of animal behaviour. Regardless of the method chosen, appropriate calibrations and recovery tests are required for both method establishment and routine operation. Successful and correct use of methods requires careful attention to detail, rigour, and routine self-assessment of the quality of the data they provide.
BASE
Ruminant husbandry is a major source of anthropogenic greenhouse gases (GHG). Filling knowledge gaps and providing expert recommendation are important for defining future research priorities, improving methodologies and establishing science-based GHG mitigation solutions to government and non-governmental organisations, advisory/extension networks, and the ruminant livestock sector. The objectives of this review is to summarize published literature to provide a detailed assessment of the methodologies currently in use for measuring enteric methane (CH4) emission from individual animals under specific conditions, and give recommendations regarding their application. The methods described include respiration chambers and enclosures, sulphur hexafluoride tracer (SF6) technique, and techniques based on short-term measurements of gas concentrations in samples of exhaled air. This includes automated head chambers (e.g. the GreenFeed system), the use of carbon dioxide (CO2) as a marker, and (handheld) laser CH4 detection. Each of the techniques are compared and assessed on their capability and limitations, followed by methodology recommendations. It is concluded that there is no 'one size fits all' method for measuring CH4 emission by individual animals. Ultimately, the decision as to which method to use should be based on the experimental objectives and resources available. However, the need for high throughput methodology e.g. for screening large numbers of animals for genomic studies, does not justify the use of methods that are inaccurate. All CH4 measurement techniques are subject to experimental variation and random errors. Many sources of variation must be considered when measuring CH4 concentration in exhaled air samples without a quantitative or at least regular collection rate, or use of a marker to indicate (or adjust) for the proportion of exhaled CH4 sampled. Consideration of the number and timing of measurements relative to diurnal patterns of CH4 emission and respiratory exchange are important, as well as consideration of feeding patterns and associated patterns of rumen fermentation rate and other aspects of animal behaviour. Regardless of the method chosen, appropriate calibrations and recovery tests are required for both method establishment and routine operation. Successful and correct use of methods requires careful attention to detail, rigour, and routine self-assessment of the quality of the data they provide.
BASE
Ruminant husbandry is a major source of anthropogenic greenhouse gases (GHG). Filling knowledge gaps and providing expert recommendation are important for defining future research priorities, improving methodologies and establishing science-based GHG mitigation solutions to government and non-governmental organisations, advisory/extension networks, and the ruminant livestock sector. The objectives of this review is to summarize published literature to provide a detailed assessment of the methodologies currently in use for measuring enteric methane (CH4) emission from individual animals under specific conditions, and give recommendations regarding their application. The methods described include respiration chambers and enclosures, sulphur hexafluoride tracer (SF6) technique, and techniques based on short-term measurements of gas concentrations in samples of exhaled air. This includes automated head chambers (e.g. the GreenFeed system), the use of carbon dioxide (CO2) as a marker, and (handheld) laser CH4 detection. Each of the techniques are compared and assessed on their capability and limitations, followed by methodology recommendations. It is concluded that there is no 'one size fits all' method for measuring CH4 emission by individual animals. Ultimately, the decision as to which method to use should be based on the experimental objectives and resources available. However, the need for high throughput methodology e.g. for screening large numbers of animals for genomic studies, does not justify the use of methods that are inaccurate. All CH4 measurement techniques are subject to experimental variation and random errors. Many sources of variation must be considered when measuring CH4 concentration in exhaled air samples without a quantitative or at least regular collection rate, or use of a marker to indicate (or adjust) for the proportion of exhaled CH4 sampled. Consideration of the number and timing of measurements relative to diurnal patterns of CH4 emission and respiratory exchange are important, as well ...
BASE
Enteric methane (CH) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH is complex, expensive, and impractical at large scales; therefore, models are commonly used to predict CH production. However, building robust prediction models requires extensive data from animals under different management systems worldwide. The objectives of this study were to (1) collate a global database of enteric CH production from individual lactating dairy cattle; (2) determine the availability of key variables for predicting enteric CH production (g/day per cow), yield [g/kg dry matter intake (DMI)], and intensity (g/kg energy corrected milk) and their respective relationships; (3) develop intercontinental and regional models and cross-validate their performance; and (4) assess the trade-off between availability of on-farm inputs and CH prediction accuracy. The intercontinental database covered Europe (EU), the United States (US), and Australia (AU). A sequential approach was taken by incrementally adding key variables to develop models with increasing complexity. Methane emissions were predicted by fitting linear mixed models. Within model categories, an intercontinental model with the most available independent variables performed best with root mean square prediction error (RMSPE) as a percentage of mean observed value of 16.6%, 14.7%, and 19.8% for intercontinental, EU, and United States regions, respectively. Less complex models requiring only DMI had predictive ability comparable to complex models. Enteric CH production, yield, and intensity prediction models developed on an intercontinental basis had similar performance across regions, however, intercepts and slopes were different with implications for prediction. Revised CH emission conversion factors for specific regions are required to improve CH production estimates in national inventories. In conclusion, information on DMI is required for good prediction, and other factors such as dietary neutral detergent fiber (NDF) concentration, improve the prediction. For enteric CH yield and intensity prediction, information on milk yield and composition is required for better estimation. ; This study is part of the Joint Programming Initiative on Agriculture, Food Security and Climate Change (FACCE‐JPI)'s "GLOBAL NETWORK" project and the "Feeding and Nutrition Network" (http://animalscience.psu.edu/fnn) of the Livestock Research Group within the Global Research Alliance for Agricultural Greenhouse Gases (www.globalresearchalliance.org). Authors gratefully acknowledge funding for this project from: USDA National Institute of Food and Agriculture Grant no. 2014‐67003‐21979) University of California, Davis Sesnon Endowed Chair Program, USDA, and Austin Eugene Lyons Fellowship (University of California, Davis); Funding from USDA National Institute of Food and Agriculture Federal Appropriations under Project PEN 04539 and Accession number 1000803, DSM Nutritional Products (Basel, Switzerland), Pennsylvania Soybean Board (Harrisburg, PA, USA), Northeast Sustainable Agriculture Research and Education (Burlington, VT, USA), and PMI Nutritional Additives (Shoreview, MN, USA); the Ministry of Economic Affairs (the Netherlands; project BO‐20‐007‐006; Global Research Alliance on Agricultural Greenhouse Gases), the Product Board Animal Feed (Zoetermeer, the Netherlands) and the Dutch Dairy Board (Zoetermeer, the Netherlands); USDA National Institute of Food and Agriculture (Hatch Multistate NC‐1042 Project Number NH00616‐R; Project Accession Number 1001855) and the New Hampshire Agricultural Experiment Station (Durham, NH); French National Research Agency through the FACCE‐JPI program (ANR‐13‐JFAC‐0003‐01), Agricultural GHG Research Initiative for Ireland (AGRI‐I), Academy of Finland (No. 281337), Helsinki, Finland; Swiss Federal Office of Agriculture, Berne, Switzerland; the Department for Environment, Food and Rural Affairs (Defra; UK); Defra, the Scottish Government, DARD, and the Welsh Government as part of the UK's Agricultural GHG Research Platform projects (www.ghgplatform.org.uk); INIA (Spain, project MIT01‐GLOBALNET‐EEZ); German Federal Ministry of Food and Agriculture (BMBL) through the Federal Office for Agriculture and Food (BLE); Swedish Infrastructure for Ecosystem Science (SITES) at Röbäcksdalen Research Station; Comisión Nacional de Investigación Científica y Tecnológica, Fondo Nacional de Desarrollo Científico y Tecnológico (Grant Nos. 11110410 and 1151355) and Fondo Regional de Tecnología Agropecuaria (FTG/RF‐1028‐RG); European Commission through SMEthane (FP7‐SME‐262270). The authors are thankful to all colleagues who contributed data to the GLOBAL NETWORK project and especially thank Luis Moraes, Ranga Appuhamy, Henk van Lingen, James Fadel, and Roberto Sainz for their support on data analysis. All authors read and approved the final manuscript. The authors declare that they have no competing interests. ; Peer Reviewed
BASE