In: Asiatische Studien: Zeitschrift der Schweizerischen Asiengesellschaft = Etudes asiatiques = Revue de la Société Suisse - Asie, Band 78, Heft 1, S. 149-172
Abstract This article analyzes how the currently known West African fatāwā up to the 11th/17th-century, namely the rulings by Maḥmud b. ʿUmar b. Muḥammad Aqīt, Maḫlūf al-Balbālī and Aḥmad Bābā al-Tinbutkī, portray the sale of free Muslims (bīʿ al-aḥrār) in the premodern Sahel. It argues that the strong contradictions between Aḥmad Bābā al-Tinbuktī's Miʿrāǧ al-ṣuʿūd and his previous legal replies to Yūsuf al-Īsī may justify to affirm that these Aǧwiba were not authored by the Timbuktu scholar, and suggests that the reasons for their elaboration and their attribution to him may be related to the interests of traders from the Maghreb, where the manuscripts of the Aǧwiba were found and the Replies supposedly emitted. This study brings forward the hypothesis that the aim of the text may have been to reduce the impact that the extraordinary measure of accepting the enslaved person's qawl when declaring to have been illicitly captured at times and places where the sale of unenslaveable persons is attested, found in the Sahelian rulings but also in preceding Andalusi and Maghrebian rulings, could have probably caused in putting the indiscriminate sale of West African captives into question. This would also imply the existence of voices against their sale, probably because the adherence to Islam of the enslaved persons must have been clearly manifest.
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 170, S. 568-577
Nowadays, extreme weather events caused by climate change are becoming more frequent. This leads to the occurrence of extreme habitats to which species must adapt. This challenge becomes crucial for species living in unstable environments, such as the riparian earthworm Eiseniella tetraedra. Its cosmopolitan distribution exposes it to various environmental changes, such as freezing in subarctic regions or droughts in Mediterranean areas. Transcriptional changes under cold and desiccation conditions could therefore shed light on the adaptive mechanisms of this species. An experiment was performed for each condition. In the cold experiment, the temperature was lowered to −14 °C ± 2 °C (compared to 8 °C for control samples), and in the desiccation treatment, humidity was lowered from 60% to 15%. Comparisons of gene expression levels between earthworms under freezing conditions and control earthworms revealed a total of 84 differentially expressed genes and comparisons between the desiccation experiment and the control yielded 163 differentially expressed genes. However, no common responses were found between the two treatments. The results suggest that E. tetraedra can acclimate to low temperatures due to the upregulation of genes involved in glucose accumulation. However, downregulation of the respiratory chain suggests that this earthworm does not tolerate freezing conditions. Under desiccation conditions, genes involved in cell protection from apoptosis and DNA repair were upregulated. In contrast, lipid metabolism was downregulated, presumably to conserve resources by reducing the rate at which they are consumed. ; IS was supported by a Predoctoral Fellowship grant by Universidad Complutense de Madrid, Spain. AV was funded by the European Union's Horizon 2020 research and innovation program through a Marie Sklodowska-Curie individual fellowship (841576). MN was supported by Ramón y Cajal Fellowship (RYC2018-024654-I) and this study was funded by Grant PGC2018-094112-A-I00, both from MCIN/AEI/10.13039/501100011033 and by "ESF: Investing in your future" and "ERDF: A way of making Europe" respectively. ; Peer reviewed
Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change. ; H.R.P.P., B.K-R., and the sWorm workshops were supported by the sDiv [Synthesis Centre of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (DFG FZT 118)]. H.R.P.P., O.F. and N.E. acknowledge funding by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 677232 to NE). K.S.R. and W.H.v.d.P. were supported by ERC-ADV grant 323020 to W.H.v.d.P. Also supported by iDiv (DFG FZT118) Flexpool proposal 34600850 (C.A.G. and N.E.); the Academy of Finland (285882) and the Natural Sciences and Engineering Research Council of Canada (postdoctoral fellowship and RGPIN-2019-05758) (E.K.C.); German Federal Ministry of Education and Research (01LO0901A) (D.J.R.); ERC-AdG 694368 (M.R.); the TULIP Laboratory of Excellence (ANR-10-LABX-41) (M.L); and the BBSRC David Phillips Fellowship to F.T.d.V. (BB/L02456X/1). In addition, data collection was funded by the Russian Foundation for Basic Research (12-04-01538-а, 12-04-01734-a, 14-44-03666-r_center_a, 15-29-02724-ofi_m, 16-04-01878-a 19-05-00245, 19-04-00-609-a); Tarbiat Modares University; Aurora Organic Dairy; UGC(NERO) (F. 1-6/Acctt./NERO/2007-08/1485); Natural Sciences and Engineering Research Council (RGPIN-2017-05391); Slovak Research and Development Agency (APVV-0098-12); Science for Global Development through Wageningen University; Norman Borlaug LEAP Programme and International Atomic Energy Agency (IAEA); São Paulo Research Foundation - FAPESP (12/22510-8); Oklahoma Agricultural Experiment Station; INIA - Spanish Agency (SUM 2006-00012-00-0); Royal Canadian Geographical Society; Environmental Protection Agency (Ireland) (2005-S-LS-8); University of Hawai'i at Mānoa (HAW01127H; HAW01123M); European Union FP7 (FunDivEurope, 265171; ROUTES 265156); U.S. Department of the Navy, Commander Pacific Fleet (W9126G-13-2-0047); Science and Engineering Research Board (SB/SO/AS-030/2013) Department of Science and Technology, New Delhi, India; Strategic Environmental Research and Development Program (SERDP) of the U.S. Department of Defense (RC-1542); Maranhão State Research Foundation (FAPEMA 03135/13, 02471/17); Coordination for the Improvement of Higher Education Personnel (CAPES 3281/2013); Ministry of Education, Youth and Sports of the Czech Republic (LTT17033); Colorado Wheat Research Foundation; Zone Atelier Alpes, French National Research Agency (ANR-11-BSV7-020-01, ANR-09-STRA-02-01, ANR 06 BIODIV 009-01); Austrian Science Fund (P16027, T441); Landwirtschaftliche Rentenbank Frankfurt am Main; Welsh Government and the European Agricultural Fund for Rural Development (Project Ref. A AAB 62 03 qA731606); SÉPAQ, Ministry of Agriculture and Forestry of Finland; Science Foundation Ireland (EEB0061); University of Toronto (Faculty of Forestry); National Science and Engineering Research Council of Canada; Haliburton Forest & Wildlife Reserve; NKU College of Arts & Sciences Grant; Österreichische Forschungsförderungsgesellschaft (837393 and 837426); Mountain Agriculture Research Unit of the University of Innsbruck; Higher Education Commission of Pakistan; Kerala Forest Research Institute, Peechi, Kerala; UNEP/GEF/TSBF-CIAT Project on Conservation and Sustainable Management of Belowground Biodiversity; Ministry of Agriculture and Forestry of Finland; Complutense University of Madrid/European Union FP7 project BioBio (FPU UCM 613520); GRDC; AWI; LWRRDC; DRDC; CONICET (National Scientific and Technical Research Council) and FONCyT (National Agency of Scientific and Technological Promotion) (PICT, PAE, PIP), Universidad Nacional de Luján y FONCyT (PICT 2293 (2006)); Fonds de recherche sur la nature et les technologies du Québec (131894); Deutsche Forschungsgemeinschaft (SCHR1000/3-1, SCHR1000/6-1, 6-2 (FOR 1598), WO 670/7-1, WO 670/7-2, & SCHA 1719/1-2), CONACYT (FONDOS MIXTOS TABASCO/PROYECTO11316); NSF (DGE-0549245, DGE-0549245, DEB-BE-0909452, NSF1241932, LTER Program DEB-97–14835); Institute for Environmental Science and Policy at the University of Illinois at Chicago; Dean's Scholar Program at UIC; Garden Club of America Zone VI Fellowship in Urban Forestry from the Casey Tree Endowment Fund; J.E. Weaver Competitive Grant from the Nebraska Chapter of The Nature Conservancy; The College of Liberal Arts and Sciences at Depaul University; Elmore Hadley Award for Research in Ecology and Evolution from the UIC Dept. of Biological Sciences, Spanish CICYT (AMB96-1161; REN2000-0783/GLO; REN2003-05553/GLO; REN2003-03989/GLO; CGL2007-60661/BOS); Yokohama National University; MEXT KAKENHI (25220104); Japan Society for the Promotion of Science KAKENHI (25281053, 17KT0074, 25252026); ADEME (0775C0035); Ministry of Science, Innovation and Universities of Spain (CGL2017-86926-P); Syngenta Philippines; UPSTREAM; LTSER (Val Mazia/Matschertal); Marie Sklodowska Curie Postdoctoral Fellowship (747607); National Science & Technology Base Resource Survey Project of China (2018FY100306); McKnight Foundation (14–168); Program of Fundamental Researches of Presidium of Russian Academy of Sciences (AААА-A18–118021490070–5); Brazilian National Council for Scientific and Technological Development (CNPq 310690/2017–0, 404191/2019–3, 307486/2013–3); French Ministry of Foreign and European Affairs; Bavarian Ministry for Food, Agriculture and Forestry (Project No B62); INRA AIDY project; MIUR PRIN 2008; Idaho Agricultural Experiment Station; Estonian Science Foundation; Ontario Ministry of the Environment, Canada; Russian Science Foundation (16-17-10284); National Natural Science Foundation of China (41371270); Australian Research Council (FT120100463); USDA Forest Service-IITF. ; Peer reviewed