In: Twin research and human genetics: the official journal of the International Society for Twin Studies (ISTS) and the Human Genetics Society of Australasia, Band 11, Heft 4, S. 384-394
Abstract'We can now explain how this common genetic variation influences athletic performance as well as why it has become so common in the general population. There is a fascinating link between factors that influence survival in ancient humans and the factors that contribute to athletic abilities in modern man.'The humanACTN3gene encodes the protein α-actinin-3, a component of the contractile apparatus in fast skeletal muscle fibers. In 1999, we identified a common polymorphism inACTN3(R577X) that results in absence of α-actinin-3 in more than one billion people worldwide, despite theACTN3gene being highly conserved during human evolution. In 2003, we demonstrated thatACTN3genotype influences elite athletic performance, and the association betweenACTN3genotype and skeletal muscle performance has since been replicated in athletes and non-athlete cohorts. We have also studied the evolution of the R577X allele during human evolution and demonstrated that the null (X) allele has undergone strong, recent positive selection in Europeans and Asian populations. We have developed anActn3knockout mouse model that replicates α-actinin-3 deficiency in humans and has already provided insight into the role of α-actinin-3 in the regulation of skeletal muscle metabolism, fibre size, muscle mass and contractile properties. In particular, mouse muscle lacking α-actinin-3 uses energy more efficiently, with the fast fibers displaying metabolic and contractile properties of slow oxidative fibers. While this favors endurance activities, the trade off is that the muscle cannot generate the rapid contractions needed to excel in sprinting. We propose that the shift towards more efficient aerobic muscle metabolism associated with α-actinin-3 deficiency also underlies the adaptive benefit of the 577X allele. Our future studies will focus on the effect ofACTN3genotype on response to exercise and ageing, and the onset and severity of muscle disease phenotype.
Genomic sequencing is rapidly transitioning into clinical practice, and implementation into healthcare systems has been supported by substantial government investment, totaling over US$4 billion, in at least 14 countries. These national genomic-medicine initiatives are driving transformative change under real-life conditions while simultaneously addressing barriers to implementation and gathering evidence for wider adoption. We review the diversity of approaches and current progress made by national genomic-medicine initiatives in the UK, France, Australia, and US and provide a roadmap for sharing strategies, standards, and data internationally to accelerate implementation.
In: Stark , Z , Dolman , L , Manolio , T A , Ozenberger , B , Hill , S L , Caulfied , M J , Levy , Y , Glazer , D , Wilson , J , Lawler , M , Boughtwood , T , Braithwaite , J , Goodhand , P , Birney , E & North , K N 2019 , ' Integrating Genomics into Healthcare: A Global Responsibility ' , American Journal of Human Genetics , vol. 104 , no. 1 , pp. 13-20 . https://doi.org/10.1016/j.ajhg.2018.11.014
Genomic sequencing is rapidly transitioning into clinical practice, and implementation into healthcare systems has been supported by substantial government investment, totaling over US$4 billion, in at least 14 countries. These national genomic-medicine initiatives are driving transformative change under real-life conditions while simultaneously addressing barriers to implementation and gathering evidence for wider adoption. We review the diversity of approaches and current progress made by national genomic-medicine initiatives in the UK, France, Australia, and US and provide a roadmap for sharing strategies, standards, and data internationally to accelerate implementation.
In: Webborn , N , WIlliams , A , McNamee , M , Bouchard , C , Pitsiladis , Y , Ahmetov , I , Ashley , E , Byrne , N , Camporesi , S , Collins , M , Dijkstra , P , Eynon , N , Fuku , N , C Garton , F , Hoppe , N , Holm , S , Kaye , J , Klissouras , V , Lucia , A , Maase , K , Moran , C , North , K N , Pigozzi , F & Wang , G 2015 , ' Direct-to-consumer genetic testing for predicting sports performance and talent identification : Consensus statement ' , British Journal of Sports Medicine , vol. 49 , no. 23 , pp. 1486-1491 . https://doi.org/10.1136/bjsports-2015-095343
The general consensus among sport and exercise genetics researchers is that genetic tests have no role to play in talent identification or the individualised prescription of training to maximise performance. Despite the lack of evidence, recent years have witnessed the rise of an emerging market of direct-to-consumer marketing (DTC) tests that claim to be able to identify children's athletic talents. Targeted consumers include mainly coaches and parents. There is concern among the scientific community that the current level of knowledge is being misrepresented for commercial purposes. There remains a lack of universally accepted guidelines and legislation for DTC testing in relation to all forms of genetic testing and not just for talent identification. There is concern over the lack of clarity of information over which specific genes or variants are being tested and the almost universal lack of appropriate genetic counselling for the interpretation of the genetic data to consumers. Furthermore independent studies have identified issues relating to quality control by DTC laboratories with different results being reported from samples from the same individual. Consequently, in the current state of knowledge, no child or young athlete should be exposed to DTC genetic testing to define or alter training or for talent identification aimed at selecting gifted children or adolescents. Large scale collaborative projects, may help to develop a stronger scientific foundation on these issues in the future.
The general consensus among sport and exercise genetics researchers is that genetic tests have no role to play in talent identification or the individualised prescription of training to maximise performance. Despite the lack of evidence, recent years have witnessed the rise of an emerging market of direct-to-consumer marketing (DTC) tests that claim to be able to identify children's athletic talents. Targeted consumers include mainly coaches and parents. There is concern among the scientific community that the current level of knowledge is being misrepresented for commercial purposes. There remains a lack of universally accepted guidelines and legislation for DTC testing in relation to all forms of genetic testing and not just for talent identification. There is concern over the lack of clarity of information over which specific genes or variants are being tested and the almost universal lack of appropriate genetic counselling for the interpretation of the genetic data to consumers. Furthermore independent studies have identified issues relating to quality control by DTC laboratories with different results being reported from samples from the same individual. Consequently, in the current state of knowledge, no child or young athlete should be exposed to DTC genetic testing to define or alter training or for talent identification aimed at selecting gifted children or adolescents. Large scale collaborative projects, may help to develop a stronger scientific foundation on these issues in the future.
The general consensus among sport and exercise genetics researchers is that genetic tests have no role to play in talent identification or the individualised prescription of training to maximise performance. Despite the lack of evidence, recent years have witnessed the rise of an emerging market of direct-to-consumer marketing (DTC) tests that claim to be able to identify children's athletic talents. Targeted consumers include mainly coaches and parents. There is concern among the scientific community that the current level of knowledge is being misrepresented for commercial purposes. There remains a lack of universally accepted guidelines and legislation for DTC testing in relation to all forms of genetic testing and not just for talent identification. There is concern over the lack of clarity of information over which specific genes or variants are being tested and the almost universal lack of appropriate genetic counselling for the interpretation of the genetic data to consumers. Furthermore independent studies have identified issues relating to quality control by DTC laboratories with different results being reported from samples from the same individual. Consequently, in the current state of knowledge, no child or young athlete should be exposed to DTC genetic testing to define or alter training or for talent identification aimed at selecting gifted children or adolescents. Large scale collaborative projects, may help to develop a stronger scientific foundation on these issues in the future.
The general consensus among sport and exercise genetics researchers is that genetic tests have no role to play in talent identification or the individualised prescription of training to maximise performance. Despite the lack of evidence, recent years have witnessed the rise of an emerging market of direct-to- consumer marketing (DTC) tests that claim to be able to identify children's athletic talents. Targeted consumers include mainly coaches and parents. There is concern among the scientific community that the current level of knowledge is being misrepresented for commercial purposes. There remains a lack of universally accepted guidelines and legislation for DTC testing in relation to all forms of genetic testing and not just for talent identification. There is concern over the lack of clarity of information over which specific genes or variants are being tested and the almost universal lack of appropriate genetic counselling for the interpretation of the genetic data to consumers. Furthermore independent studies have identified issues relating to quality control by DTC laboratories with different results being reported from samples from the same individual. Consequently, in the current state of knowledge, no child or young athlete should be exposed to DTC genetic testing to define or alter training or for talent identification aimed at selecting gifted children or adolescents. Large scale collaborative projects, may help to develop a stronger scientific foundation on these issues in the future.
The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits. ; B.P.C. acknowledges funding from Abigail Wexner Research Institute at Nationwide Children's Hospital; T.H. Nyrönen acknowledges funding from Academy of Finland grant #31996; A.M.-J., K.N., T.F.B., O.M.H., and Z.S. acknowledge funding from Australian Medical Research Future Fund; M.S. acknowledges funding from Biobank Japan; D. Bujold and S.J.M.J. acknowledge funding from Canada Foundation for Innovation; L.J.D. acknowledges funding from Canada Foundation for Innovation Cyber Infrastructure grant #34860; D. Bujold and G.B. acknowledge funding from CANARIE; L.J.D. acknowledges funding from CANARIE Research Data Management contract #RDM-090 (CHORD) and #RDM2-053 (ClinDIG); K.K.-L. acknowledges funding from CanSHARE; T.L.T. acknowledges funding from Chan Zuckerberg Initiative; T. Burdett acknowledges funding from Chan Zuckerberg Initiative grant #2017-171671; D. Bujold, G.B., and L.D.S. acknowledge funding from CIHR; L.J.D. acknowledges funding from CIHR grant #404896; M.J.S.B. acknowledges funding from CIHR grant #SBD-163124; M. Courtot and M. Linden acknowledge funding from CINECA project EU Horizon 2020 grant #825775; D. Bujold and G.B. acknowledge funding from Compute Canada; F.M.-G. acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – NFDI 1/1 "GHGA – German Human Genome-Phenome Archive; R.M.H.-S. acknowledges funding from Duke-Margolis Center for Health Policy; S.B. and A.J.B. acknowledge funding from EJP-RD EU Horizon 2020 grant #825575; A. Niewielska, A.K., D.S., G.I.S., J.A.T., J.R., M.A.K., M. Baudis, M. Linden, S.B., S.S., T.H. Nyrönen, and T.M.K. acknowledge funding from ELIXIR; A. Niewielska acknowledges funding from EOSC-Life EU Horizon 2020 grant #824087; J.-P.H. acknowledges funding from ETH Domain Strategic Focal Area "Personalized Health and Related Technologies (PHRT)" grant #2017-201; F.M.-G. acknowledges funding from EUCANCan EU Horizon 2020 grant #825835; B.M.K., D. Bujold, G.B., L.D.S., M.J.S.B., N.S., S.E.W., and Y.J. acknowledge funding from Genome Canada; B.M.K., M.J.S.B., S.E.W., and Y.J. acknowledge funding from Genome Quebec; F.M.-G. acknowledges funding from German Human Genome-Phenome Archive; C. Voisin acknowledges funding from Google; A.J.B. acknowledges funding from Health Data Research UK Substantive Site Award; D.H. acknowledges funding from Howard Hughes Medical Institute; S.B. acknowledges funding from Instituto de Salud Carlos III; S.-S.K. and K.T. acknowledge funding from Japan Agency for Medical Research and Development (AMED); S. Ogishima acknowledges funding from Japan Agency for Medical Research and Development (AMED) grant #20kk0205014h0005; C.Y. and K. Kosaki acknowledge funding from Japan Agency for Medical Research and Development (AMED) grant #JP18kk0205012; GEM Japan acknowledges funding from Japan Agency for Medical Research and Development (AMED) grants #19kk0205014h0004, #20kk0205014h0005, #20kk0205013h0005, #20kk0205012h0005, #20km0405401h0003, and #19km0405001h0104; J.R. acknowledges funding from La Caixa Foundation under project #LCF/PR/GN13/50260009; R.R.F. acknowledges funding from Mayo Clinic Center for Individualized Medicine; Y.J. and S.E.W. acknowledge funding from Ministère de l'Économie et de l'Innovation du Québec for the Can-SHARE Connect Project; S.E.W. and S.O.M.D. acknowledge funding from Ministère de l'Économie et de l'Innovation du Québec for the Can-SHARE grant #141210; M.A.H., M.C.M.-T., J.O.J., H.E.P., and P.N.R. acknowledge funding from Monarch Initiative grant #R24OD011883 and Phenomics First NHGRI grant #1RM1HG010860; A.L.M. and E.B. acknowledge funding from MRC grant #MC_PC_19024; P.T. acknowledges funding from National University of Singapore and Agency for Science, Technology and Research; J.M.C. acknowledges funding from NHGRI; A.H.W. acknowledges funding from NHGRI awards K99HG010157, R00HG010157, and R35HG011949; A.M.-J., K.N., D.P.H., O.M.H., T.F.B., and Z.S. acknowledge funding from NHMRC grants #GNT1113531 and #GNT2000001; D.L.C. acknowledges funding from NHMRC Ideas grant #1188098; A.B.S. acknowledges funding from NHMRC Investigator Fellowship grant #APP177524; J.M.C. and L.D.S. acknowledge funding from NIH; A.A.P. acknowledges funding from NIH Anvil; A.V.S. acknowledges funding from NIH contract #HHSN268201800002I (TOPMed Informatics Research Center); S.U. acknowledges funding from NIH ENCODE grant #UM1HG009443; M.C.M.-T. and M.A.H. acknowledge funding from NIH grant #1U13CA221044; R.J.C. acknowledges funding from NIH grants #1U24HG010262 and #1U2COD023196; M.G. acknowledges funding from NIH grant #R00HG007940; J.B.A., S.L., P.G., E.B., H.L.R., and L.S. acknowledge funding from NIH grant #U24HG011025; K.P.E. acknowledges funding from NIH grant #U2C-RM-160010; J.A.E. acknowledges funding from NIH NCATS grant #U24TR002306; M.M. acknowledges funding from NIH NCI contract #HHSN261201400008c and ID/IQ Agreement #17X146 under contract #HHSN2612015000031 and #75N91019D00024; R.M.C.-D. acknowledges funding from NIH NCI grant #R01CA237118; M. Cline acknowledges funding from NIH NCI grant #U01CA242954; K.P.E. acknowledges funding from NIH NCI ITCR grant #1U24CA231877-01; O.L.G. acknowledges funding from NIH NCI ITCR grant #U24CA237719; R.L.G. acknowledges funding from NIH NCI task order #17X147F10 under contract #HHSN261200800001E; A.F.R. acknowledges funding from NIH NHGRI grant #RM1HG010461; N.M. and L.J.Z. acknowledge funding from NIH NHGRI grant #U24HG006941; R.R.F., T.H. Nelson, L.J.B., and H.L.R. acknowledge funding from NIH NHGRI grant #U41HG006834; B.J.W. acknowledges funding from NIH NHGRI grant #UM1HG009443A; M. Cline acknowledges funding from NIH NHLBI BioData Catalyst Fellowship grant #5118777; M.M. acknowledges funding from NIH NHLBI BioData Catalyst Program grant #1OT3HL142478-01; N.C.S. acknowledges funding from NIH NIGMS grant #R35-GM128636; M.C.M.-T., M.A.H., P.N.R., and R.R.F. acknowledge funding from NIH NLM contract #75N97019P00280; E.B. and A.L.M. acknowledge funding from NIHR; R.G. acknowledges funding from Project Ris3CAT VEIS; S.B. acknowledges funding from RD-Connect, Seventh Framework Program grant #305444; J.K. acknowledges funding from Robertson Foundation; S.B. and A.J.B. acknowledge funding from Solve-RD, EU Horizon 2020 grant #779257; T.S. and S. Oesterle acknowledge funding from Swiss Institute of Bioinformatics (SIB) and Swiss Personalized Health Network (SPHN), supported by the Swiss State Secretariat for Education, Research and Innovation SERI; S.J.M.J. acknowledges funding from Terry Fox Research Institute; A.E.H., M.P.B., M. Cupak, M.F., and J.F. acknowledge funding from the Digital Technology Supercluster; D.F.V. acknowledges funding from the Australian Medical Research Future Fund, as part of the Genomics Health Futures Mission grant #76749; M. Baudis acknowledges funding from the BioMedIT Network project of Swiss Institute of Bioinformatics (SIB) and Swiss Personalized Health Network (SPHN); B.M.K. acknowledges funding from the Canada Research Chair in Law and Medicine and CIHR grant #SBD-163124; D.S., G.I.S., M.A.K., S.B., S.S., and T.H. Nyrönen acknowledge funding from the EU Horizon 2020 Beyond 1 Million Genomes (B1MG) Project grant #951724; P.F., A.D.Y., F.C., H.S., I.U.L., D. Gupta, M. Courtot, S.E.H., T. Burdett, T.M.K., and S.F. acknowledge funding from the European Molecular Biology Laboratory; Y.J. and S.E.W. acknowledge funding from the Government of Canada; P.G. acknowledges funding from the Government of Canada through Genome Canada and the Ontario Genomics Institute (OGI-206); J.Z. acknowledges funding from the Government of Ontario; C.K.Y. acknowledges funding from the Government of Ontario, Canada Foundation for Innovation; C. Viner and M.M.H. acknowledge funding from the Natural Sciences and Engineering Research Council of Canada (grant #RGPIN-2015-03948 to M.M.H. and Alexander Graham Bell Canada Graduate Scholarship to C.V.); K.K.-L. acknowledges funding from the Program for Integrated Database of Clinical and Genomic Information; J.K. acknowledges funding from the Robertson Foundation; D.F.V. acknowledges funding from the Victorian State Government through the Operational Infrastructure Support (OIS) Program; A.M.L., R.N., and H.V.F. acknowledge funding from Wellcome (collaborative award); F.C., H.S., P.F., and S.E.H. acknowledge funding from Wellcome Trust grant #108749/Z/15/Z; A.D.Y., H.S., I.U.L., M. Courtot, H.E.P., P.F., and T.M.K. acknowledge funding from Wellcome Trust grant #201535/Z/16/Z; A.M., J.K.B., R.J.M., R.M.D., and T.M.K. acknowledge funding from Wellcome Trust grant #206194; E.B., P.F., P.G., and S.F. acknowledge funding from Wellcome Trust grant #220544/Z/20/Z; A. Hamosh acknowledges funding from NIH NHGRI grant U41HG006627 and U54HG006542; J.S.H. acknowledges funding from National Taiwan University #91F701-45C and #109T098-02; the work of K.W.R. was supported by the Intramural Research Program of the National Library of Medicine, NIH. For the purpose of open access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission. H.V.F. acknowledges funding from Wellcome Grant 200990/A/16/Z 'Designing, developing and delivering integrated foundations for genomic medicine'. ; Peer reviewed