In Memoriam
In: Labour history review, Band 51, Heft 1
ISSN: 1745-8188
9 Ergebnisse
Sortierung:
In: Labour history review, Band 51, Heft 1
ISSN: 1745-8188
In: History workshop: a journal of socialist and feminist historians, Band 13, Heft 1, S. 188-a-188
ISSN: 1477-4569
In: Feminist studies: FS, Band 6, Heft 1, S. 65
ISSN: 2153-3873
In: American journal of health promotion, Band 37, Heft 4, S. 524-528
ISSN: 2168-6602
Purpose Assess family-level factors associated with childhood immunization schedule adherence. Design Prospective cohort; Setting; The Healthy Start study enrolled 1,410 pregnant women in Denver, Colorado 2009-2014 Subjects Children with available vaccination data in medical records (0-6 years old) Measures Vaccine schedule completion and compliance Analysis Logistic regression comparing family-level factors that differ based on vaccine schedule adherence Results Most immunizations required in Colorado for school entry were below national completion goals with 61.8% of participants (n = 532/861) completing the full vaccination series. Most participants received the first dose of individual vaccines on time (73.5% - 90.7%), but fewer received all doses on time (21.0% - 39.5%). Factors associated with not completing the vaccination series (OR [95% CI]) included: in-utero exposure to cigarette smoke (1.97 [1.41, 2.75]), single parent household (1.70 [1.21, 2.38]), children identified as non-White (Hispanic 1.40 [1.01, 1.94]; Black 1.88 [1.24, 2.85]; Other 2.17 [1.34, 3.49]), mothers not working outside the home (1.98 [1.46, 2.67]), and household income <$70,000 per year (<$40,000 1.93 [1.35, 2.75]; $40,000-$70,000 1.64 [1.09, 2.46]). Conversely, families with more educated mothers (0.47 [0.29, 0.76]) and older parents (0.97 [0.94, 0.99]) were significantly more likely to complete the series. Conclusions These findings may help identify groups at risk of immunization schedule non-adherence and may be used to target education/advocacy campaigns to reduce hesitancy and increase access in these populations.
CONTEXT: Vitamin D inadequacy is common in the adult population of the United States. Although the genetic determinants underlying vitamin D inadequacy have been studied in people of European ancestry, less is known about populations with Hispanic or African ancestry. OBJECTIVE: The Trans-Ethnic Evaluation of Vitamin D (TRANSCEN-D) genomewide association study (GWAS) consortium was assembled to replicate genetic associations with 25-hydroxyvitamin D [25(OH)D] concentrations from the Study of Underlying Genetic Determinants of Vitamin D and Highly Related Traits (SUNLIGHT) meta-analyses of European ancestry and to identify genetic variants related to vitamin D concentrations in African and Hispanic ancestries. DESIGN: Ancestry-specific (Hispanic and African) and transethnic (Hispanic, African, and European) meta-analyses were performed with Meta-Analysis Helper software (METAL). PATIENTS OR OTHER PARTICIPANTS: In total, 8541 African American and 3485 Hispanic American (from North America) participants from 12 cohorts and 16,124 European participants from SUNLIGHT were included in the study. MAIN OUTCOME MEASURES: Blood concentrations of 25(OH)D were measured for all participants. RESULTS: Ancestry-specific analyses in African and Hispanic Americans replicated single nucleotide polymorphisms (SNPs) in GC (2 and 4 SNPs, respectively). An SNP (rs79666294) near the KIF4B gene was identified in the African American cohort. Transethnic evaluation replicated GC and DHCR7 region SNPs. Additionally, the transethnic analyses revealed SNPs rs719700 and rs1410656 near the ANO6/ARID2 and HTR2A genes, respectively. CONCLUSIONS: Ancestry-specific and transethnic GWASs of 25(OH)D confirmed findings in GC and DHCR7 for African and Hispanic American samples and revealed findings near KIF4B, ANO6/ARID2, and HTR2A. The biological mechanisms that link these regions with 25(OH)D metabolism warrant further investigation.
BASE
The authors have read the journal's policy and the authors of this manuscript have the following competing interests: Bruce M. Psaty (BMP) serves on the DSMB of a clinical trial funded by Zoll Lifecor and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. Barbara V. Howard (BVH) has a contract from National Heart, Lung, and Blood Institute (NHLBI). Brenda W.J.H. Penninx (BWJHP) has received research funding (non-related to the work reported here) from Jansen Research and Boehringer Ingelheim. Mike A. Nalls (MAN) is supported by a consulting contract between Data Tecnica International LLC and the National Institute on Aging (NIA), National Institutes of Health (NIH), Bethesda, MD, USA. MAN also consults for Illumina Inc., the Michael J. Fox Foundation, and the University of California Healthcare. MAN also has commercial affiliation with Data Tecnica International, Glen Echo, MD, USA. Mark J. Caulfield (MJC) has commercial affiliation and is Chief Scientist for Genomics England, a UK government company. OHF is supported by grants from Metagenics (on women's health and epigenetics) and from Nestlé (on child health). Peter S. Sever (PSS) is financial supported from several pharmaceutical companies which manufacture either blood pressure lowering or lipid lowering agents, or both, and consultancy fees. Paul W. Franks (PWF) has been a paid consultant in the design of a personalized nutrition trial (PREDICT) as part of a private-public partnership at Kings College London, UK, and has received research support from several pharmaceutical companies as part of European Union Innovative Medicines Initiative (IMI) projects. Terho Lehtimäki (TL) is employed by Fimlab Ltd. Ozren Polašek (OP) is employed by Gen‐info Ltd. There are no patents, products in development, or marked products to declare. All the other authors have declared no competing interests exist. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials. ; International audience ; Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.
BASE
The authors have read the journal's policy and the authors of this manuscript have the following competing interests: Bruce M. Psaty (BMP) serves on the DSMB of a clinical trial funded by Zoll Lifecor and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. Barbara V. Howard (BVH) has a contract from National Heart, Lung, and Blood Institute (NHLBI). Brenda W.J.H. Penninx (BWJHP) has received research funding (non-related to the work reported here) from Jansen Research and Boehringer Ingelheim. Mike A. Nalls (MAN) is supported by a consulting contract between Data Tecnica International LLC and the National Institute on Aging (NIA), National Institutes of Health (NIH), Bethesda, MD, USA. MAN also consults for Illumina Inc., the Michael J. Fox Foundation, and the University of California Healthcare. MAN also has commercial affiliation with Data Tecnica International, Glen Echo, MD, USA. Mark J. Caulfield (MJC) has commercial affiliation and is Chief Scientist for Genomics England, a UK government company. OHF is supported by grants from Metagenics (on women's health and epigenetics) and from Nestlé (on child health). Peter S. Sever (PSS) is financial supported from several pharmaceutical companies which manufacture either blood pressure lowering or lipid lowering agents, or both, and consultancy fees. Paul W. Franks (PWF) has been a paid consultant in the design of a personalized nutrition trial (PREDICT) as part of a private-public partnership at Kings College London, UK, and has received research support from several pharmaceutical companies as part of European Union Innovative Medicines Initiative (IMI) projects. Terho Lehtimäki (TL) is employed by Fimlab Ltd. Ozren Polašek (OP) is employed by Gen‐info Ltd. There are no patents, products in development, or marked products to declare. All the other authors have declared no competing interests exist. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials. ; International audience ; Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.
BASE
The authors have read the journal's policy and the authors of this manuscript have the following competing interests: Bruce M. Psaty (BMP) serves on the DSMB of a clinical trial funded by Zoll Lifecor and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. Barbara V. Howard (BVH) has a contract from National Heart, Lung, and Blood Institute (NHLBI). Brenda W.J.H. Penninx (BWJHP) has received research funding (non-related to the work reported here) from Jansen Research and Boehringer Ingelheim. Mike A. Nalls (MAN) is supported by a consulting contract between Data Tecnica International LLC and the National Institute on Aging (NIA), National Institutes of Health (NIH), Bethesda, MD, USA. MAN also consults for Illumina Inc., the Michael J. Fox Foundation, and the University of California Healthcare. MAN also has commercial affiliation with Data Tecnica International, Glen Echo, MD, USA. Mark J. Caulfield (MJC) has commercial affiliation and is Chief Scientist for Genomics England, a UK government company. OHF is supported by grants from Metagenics (on women's health and epigenetics) and from Nestlé (on child health). Peter S. Sever (PSS) is financial supported from several pharmaceutical companies which manufacture either blood pressure lowering or lipid lowering agents, or both, and consultancy fees. Paul W. Franks (PWF) has been a paid consultant in the design of a personalized nutrition trial (PREDICT) as part of a private-public partnership at Kings College London, UK, and has received research support from several pharmaceutical companies as part of European Union Innovative Medicines Initiative (IMI) projects. Terho Lehtimäki (TL) is employed by Fimlab Ltd. Ozren Polašek (OP) is employed by Gen‐info Ltd. There are no patents, products in development, or marked products to declare. All the other authors have declared no competing interests exist. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials. ; International audience ; Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.
BASE
Publisher's version (útgefin grein). ; Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3, 514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 × 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2, 159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 × 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 × 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension. ; The following authors declare commercial private and/or governmental affiliations: Bruce M. Psaty (BMP) serves on the DSMB of a clinical trial funded by Zoll Lifecor and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. Barbara V. Howard (BVH) has a contract from National Heart, Lung, and Blood Institute (NHLBI). Brenda W.J.H. Penninx (BWJHP) has received research funding (non-related to the work reported here) from Jansen Research and Boehringer Ingelheim. Mike A. Nalls (MAN) is supported by a consulting contract between Data Tecnica International LLC and the National Institute on Aging (NIA), National Institutes of Health (NIH), Bethesda, MD, USA. MAN also consults for Illumina Inc., the Michael J. Fox Foundation, and the University of California Healthcare. MAN also has commercial affiliation with Data Tecnica International, Glen Echo, MD, USA. Mark J. Caulfield (MJC) has commercial affiliation and is Chief Scientist for Genomics England, a UK government company. Oscar H Franco (OHF) is supported by grants from Metagenics (on women's health and epigenetics) and from Nestlé (on child health). Peter S. Sever (PSS) is financial supported from several pharmaceutical companies which manufacture either blood pressure lowering or lipid lowering agents, or both, and consultancy fees. Paul W. Franks (PWF) has been a paid consultant in the design of a personalized nutrition trial (PREDICT) as part of a private-public partnership at Kings College London, UK, and has received research support from several pharmaceutical companies as part of European Union Innovative Medicines Initiative (IMI) projects. Fimlab LTD provided support in the form of salaries for author Terho Lehtimäki (TL) but did not have any additional role in the study design to publish, or preparation of the manuscript. Gen‐info Ltd provided support in the form of salaries for author Ozren Polašek (OP) but did not have any additional role in the study design to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the 'author contributions' section. There are no patents, products in development, or marked products to declare. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ; Peer Reviewed
BASE