This is the peer reviewed version of the following article:Chemistry - A European Journal 22.13 (2016): 4369-4373, which has been published in final form at http://dx.doi.org/10.1002/chem.201600166. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving ; Phthalocyanines (Pcs) are used as sensitizers in dye-sensitized solar cells (DSSCs) because of their stability and intense absorption in the red and near-IR regions. Impressive progress has been made in photovoltaic efficiencies by introduction of bulky peripheral substituents to help suppress macrocycle aggregation. To reach benchmark efficiencies reported for other related dyes, new designs need to be explored. Single carboxy-ZnPc regioisomers substituted at the non-peripheral positions by rigid aryl groups have now been studied, which has shed light on the influence of steric hindrance and/or orientation of the substituent around the anchoring group on the photovoltaic response. The regioisomer bearing the aryl group far away from the anchoring group produces a more effective sensitization of the TiO2 films and higher short-circuit photocurrent density (Jsc). Taking advantage of the good photovoltaic performance in the near-IR region of this ZnPc, it was combined with another appropriate dye for panchromatic sensitization of the mesoporous photoelectrode and an increase of the overall device efficiency ; Financial support from the European Union (FP7-ENERGY-2012- 1 framework, GLOBASOL project, Proposal No 309194-2), from the Spanish MINECO (CTQ2014-52869-P), Comunidad de Madrid (FOTOCARBON S2013/MIT-2841), and MECD (F.P.U. fellowship to L.T.) is gratefully acknowledged
A non-aggregated Zn(ii)octa(2,6-diphenylphenoxy) phthalocyanine (coded as TT80) has been used as a hole-transporting material for perovskite solar cells. The cells were fabricated under three different configurations by changing the uptake solvent (chlorobenzene or toluene) and incorporating additives (bis(trifluoromethane) sulfonimide lithium salt (LiTFSI) and 4-tert-butylpyridine (TBP). A power conversion efficiency of 6.7% (AM1.5G standard conditions) was achieved for the best cell under optimized configuration ; We are grateful for the financial support of the MEC, Spain (CTQ2014-52869/BQU), Comunidad de Madrid, Spain (FOTOCARBON, S2013/MIT-2841), and the European Union within the FP7-ENERGY-2012-1, nr. 309194-2, GLOBALSOL project. M. K. N. thanks the European Union for funding within the Seventh Framework Program [FP7/2007–2013] under the grant agreement no. 604032 of the MESO project
Improving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis. ; This article is based upon work from COST Action StableNextSol MP1307 supported by COST (European Cooperation in Science and Technology). M.V.K., E.A.K., V.B. and A.O. thank the financial support of the United States – Israel Binational Science Foundation (grant no. 2015757). E.A.K., A.A. and I.V.-F. acknowledge partial support from the SNaPSHoTs project in the framework of the German-Israeli bilateral R&D cooperation in the field of applied nanotechnology. M.S.L. thanks the financial support of National Science Foundation (ECCS, award #1610833). S.C., M.Manceau and M.Matheron thank the financial support of European Union's Horizon 2020 research and innovation programme under grant agreement no 763989 (APOLO project). F.D.R. and T.M.W. would like to acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) through the SPECIFIC Innovation and Knowledge Centre (EP/N020863/1) and express their gratitude to the Welsh Government for their support of the Ser Solar programme. P.A.T. acknowledges financial support from the Russian Science Foundation (project No. 19-73-30020). J.K. acknowledges the support by the Solar Photovoltaic Academic Research Consortium II (SPARC II) project, gratefully funded by WEFO. M.K.N. acknowledges financial support from Innosuisse project 25590.1 PFNM-NM, Solaronix, Aubonne, Switzerland. C.-Q.M. would like to acknowledge The Bureau of International Cooperation of Chinese Academy of Sciences for the support of ISOS11 and the Ministry of Science and Technology of China for the financial support (no. 2016YFA0200700). N.G.P. acknowledges financial support from the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT Future Planning (MSIP) of Korea under contracts NRF-2012M3A6A7054861 and NRF-2014M3A6A7060583 (Global Frontier R&D Program on Center for Multiscale Energy System). CSIRO's contribution to this work was conducted with funding support from the Australian Renewable Energy Agency (ARENA) through its Advancing Renewables Program. A.F.N gratefully acknowledges support from FAPESP (Grant 2017/11986-5) and Shell and the strategic importance of the support given by ANP (Brazil's National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. Y.-L.L. and Q.B. acknowledge support from the National Science Foundation Division of Civil, Mechanical and Manufacturing Innovation under award no. 1824674. S.D.S. acknowledges the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (HYPERION, grant agreement no. 756962), and the Royal Society and Tata Group (UF150033). The work at the National Renewable Energy Laboratory was supported by the US Department of Energy (DOE) under contract DE-AC36-08GO28308 with Alliance for Sustainable Energy LLC, the manager and operator of the National Renewable Energy Laboratory. The authors (J.J.B, J.M.L., M.O.R, K.Z.) acknowledge support from the 'De-risking halide perovskite solar cells' program of the National Center for Photovoltaics, funded by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technology Office. The views expressed in the article do not necessarily represent the views of the DOE or the US Government. H.J.S. acknowledges the support of EPSRC UK, Engineering and Physical Sciences Research Council. V.T. and M.Madsen acknowledge 'Villum Foundation' for funding of the project CompliantPV, under project no. 13365. M.Madsen acknowledges Danmarks Frie Forskningsfond, DFF FTP for funding of the project React-PV, no. 8022-00389B. M.G. and S.M.Z. thank the King Abdulaziz City for Science and technology (KACST) for financial support. S.V. acknowledges TKI-UE/Ministry of Economic Affairs for financial support of the TKI-UE toeslag project POP-ART (no. 1621103). RC thanks the grants for Development of New Faculty Staff, Ratchadaphiseksomphot Endowment Fund. A.D.C. gratefully acknowledges funding from the European Union's Horizon 2020 Research and Innovation Program (grant agreement no. 785219-GrapheneCore2 and no. 764047-ESPResSo). M.L.C. and H.X. acknowledges the support from Spanish MINECO for the grant GraPErOs (ENE2016-79282-C5-2-R), the OrgEnergy Excellence Network CTQ2016-81911- REDT, the Agència de Gestiód'Ajuts Universitaris i de Recerca (AGAUR) for the support to the consolidated Catalonia research group 2017 SGR 329 and the Xarxa de Referència en Materials Avançats per a l'Energia (Xarmae). ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant no. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya. ; Peer reviewed