African Global Representation in Biomedical Sciences
In: Annual Review of Biomedical Data Science, Band 4, S. 57-81
7 Ergebnisse
Sortierung:
In: Annual Review of Biomedical Data Science, Band 4, S. 57-81
SSRN
Background The role of the human microbiome in health and disease is an emerging and important area of research; however, there is a concern that African populations are under-represented in human microbiome studies. We, therefore, conducted a systematic survey of African human microbiome studies to provide an overview and identify research gaps. Our secondary objectives were: (i) to determine the number of peer-reviewed publications; (ii) to identify the extent to which the researches focused on diseases identified by the World Health Organization [WHO] State of Health in the African Region Report as being the leading causes of morbidity and mortality in 2018; (iii) to describe the extent and pattern of collaborations between researchers in Africa and the rest of the world; and (iv) to identify leadership and funders of the studies. Methodology We systematically searched Medline via PubMed, Scopus, CINAHL, Academic Search Premier, Africa-Wide Information through EBSCOhost, and Web of Science from inception through to 1st April 2020. We included studies that characterized samples from African populations using next-generation sequencing approaches. Two reviewers independently conducted the literature search, title and abstract, and full-text screening, as well as data extraction. Results We included 168 studies out of 5515 records retrieved. Most studies were published in PLoS One (13%; 22/168), and samples were collected from 33 of the 54 African countries. The country where most studies were conducted was South Africa (27/168), followed by Kenya (23/168) and Uganda (18/168). 26.8% (45/168) focused on diseases of significant public health concern in Africa. Collaboration between scientists from the United States of America and Africa was most common (96/168). The first and/or last authors of 79.8% of studies were not affiliated with institutions in Africa. Major funders were the United States of America National Institutes of Health (45.2%; 76/168), Bill and Melinda Gates Foundation (17.8%; 30/168), and the European Union (11.9%; 20/168). Conclusions There are significant gaps in microbiome research in Africa, especially those focusing on diseases of public health importance. There is a need for local leadership, capacity building, intra-continental collaboration, and national government investment in microbiome research within Africa. Video Abstract
BASE
Mobile phones are increasingly used to facilitate in-service training for frontline health workers (FLHWs). Mobile learning (mLearning) programmes have the potential to provide FLHWs with high quality, inexpensive, standardised learning at scale, and at the time and location of their choosing. However, further research is needed into FLHW engagement with mLearning content at scale, a factor which could influence knowledge and service delivery. Mobile Academy is an interactive voice response training course for FLHWs in India, which aims to improve interpersonal communication skills and refresh knowledge of preventative reproductive, maternal, neonatal and child health. FLHWs dial in to an audio course consisting of 11 chapters, each with a 4-question true/false quiz, resulting in a cumulative pass/fail score. In this paper, we analyse call data records from the national version of Mobile Academy to explore coverage, user engagement and completion. Over 158 596 Accredited Social Health Activists (ASHAs) initiated the national version, while 111 994 initiated the course on state-based platforms. Together, this represents 41% of the estimated total number of ASHAs registered in the government database across 13 states. Of those who initiated the national version, 81% completed it; and of those, over 99% passed. The initiation and completion rates varied by state, with Rajasthan having the highest initiation rate. Many ASHAs made multiple calls in the afternoons and evenings but called in for longer durations earlier in the day. Findings from this analysis provide important insights into the differential reach and uptake of the programme across states.
BASE
The Kilkari programme is being implemented by the Government of India in 13 states. Designed by BBC Media Action and scaled in collaboration with the Ministry of Health and Family Welfare from January 2016, Kilkari had provided mobile health information to over 10 million subscribers by the time BBC Media Action transitioned the service to the government in April 2019. Despite the reach of Kilkari in terms of the absolute number of subscribers, no longitudinal analysis of subscriber exposure to health information content over time has been conducted, which may underpin effectiveness and changes in health outcomes. In this analysis, we draw from call data records to explore exposure to the Kilkari programme in India for the 2018 cohort of subscribers. We start by assessing the timing of the first successful call answered by subscribers on entry to the programme during pregnancy or postpartum, and then assess call volume, delivery, answering and listening rates over time. Findings suggest that over half of subscribers answer their first call after childbirth, with the remaining starting in the pregnancy period. The system handles upwards of 1.2 million calls per day on average. On average, 50% of calls are picked up on the first call attempt, 76% by the third and 99.5% by the ninth call attempt. Among calls picked up, over 48% were listened to for at least 50% of the total content duration and 43% were listened to for at least 75%. This is the first analysis of its kind of a maternal mobile messaging programme at scale in India. Study analyses suggest that multiple call attempts may be required to reach subscribers. However, once answered, subscribers tend to listen the majority of the call—a figure consistent across states, over time, and by health content area.
BASE
Genomic research and biobanking has undergone exponential growth in Africa and at the heart of this research is the sharing of biospecimens and associated clinical data amongst researchers in Africa and across the world. While this move towards open science is progressing, there has been a strengthening internationally of data protection regulations that seek to safeguard the rights of data subjects while promoting the movement of data for the benefit of research. In line with this global shift, many jurisdictions in Africa are introducing data protection regulations, but there has been limited consideration of the regulation of data sharing for genomic research and biobanking in Africa. South Africa (SA) is one country that has sought to regulate the international sharing of data and has enacted the Protection of Personal Information Act (POPIA) 2013 that will change the governance and regulation of data in SA, including health research data, once it is in force. To identify and discuss challenges and opportunities in the governance of data sharing for genomic and health research data in SA, a two-day meeting was convened in February 2019 in Cape Town, SA with over 30 participants with expertise in law, ethics, genomics and biobanking science, drawn from academia, industry, and government. This report sets out some of the key challenges identified during the workshop and the opportunities and limitations of the current regulatory framework in SA.
BASE
Genomics policy development involves assessing a wide range of issues extending from specimen collection and data sharing to whether and how to utilize advanced technologies in clinical practice and public health initiatives. A survey was conducted among African scientists and stakeholders with an interest in genomic medicine, seeking to evaluate: 1) Their knowledge and understanding of the field. 2) The institutional environment and infrastructure available to them. 3) The state and awareness of the field in their country. 4) Their perception of potential barriers to implementation of precision medicine. We discuss how the information gathered in the survey could instruct the policies of African institutions seeking to implement precision, and more specifically, genomic medicine approaches in their health care systems in the following areas: 1) Prioritization of infrastructures. 2) Need for translational research. 3) Information dissemination to potential users. 4) Training programs for specialized personnel. 5) Engaging political stakeholders and the public. A checklist with key requirements to assess readiness for implementation of genomic medicine programs is provided to guide the process from scientific discovery to clinical application.
BASE
The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits. ; B.P.C. acknowledges funding from Abigail Wexner Research Institute at Nationwide Children's Hospital; T.H. Nyrönen acknowledges funding from Academy of Finland grant #31996; A.M.-J., K.N., T.F.B., O.M.H., and Z.S. acknowledge funding from Australian Medical Research Future Fund; M.S. acknowledges funding from Biobank Japan; D. Bujold and S.J.M.J. acknowledge funding from Canada Foundation for Innovation; L.J.D. acknowledges funding from Canada Foundation for Innovation Cyber Infrastructure grant #34860; D. Bujold and G.B. acknowledge funding from CANARIE; L.J.D. acknowledges funding from CANARIE Research Data Management contract #RDM-090 (CHORD) and #RDM2-053 (ClinDIG); K.K.-L. acknowledges funding from CanSHARE; T.L.T. acknowledges funding from Chan Zuckerberg Initiative; T. Burdett acknowledges funding from Chan Zuckerberg Initiative grant #2017-171671; D. Bujold, G.B., and L.D.S. acknowledge funding from CIHR; L.J.D. acknowledges funding from CIHR grant #404896; M.J.S.B. acknowledges funding from CIHR grant #SBD-163124; M. Courtot and M. Linden acknowledge funding from CINECA project EU Horizon 2020 grant #825775; D. Bujold and G.B. acknowledge funding from Compute Canada; F.M.-G. acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – NFDI 1/1 "GHGA – German Human Genome-Phenome Archive; R.M.H.-S. acknowledges funding from Duke-Margolis Center for Health Policy; S.B. and A.J.B. acknowledge funding from EJP-RD EU Horizon 2020 grant #825575; A. Niewielska, A.K., D.S., G.I.S., J.A.T., J.R., M.A.K., M. Baudis, M. Linden, S.B., S.S., T.H. Nyrönen, and T.M.K. acknowledge funding from ELIXIR; A. Niewielska acknowledges funding from EOSC-Life EU Horizon 2020 grant #824087; J.-P.H. acknowledges funding from ETH Domain Strategic Focal Area "Personalized Health and Related Technologies (PHRT)" grant #2017-201; F.M.-G. acknowledges funding from EUCANCan EU Horizon 2020 grant #825835; B.M.K., D. Bujold, G.B., L.D.S., M.J.S.B., N.S., S.E.W., and Y.J. acknowledge funding from Genome Canada; B.M.K., M.J.S.B., S.E.W., and Y.J. acknowledge funding from Genome Quebec; F.M.-G. acknowledges funding from German Human Genome-Phenome Archive; C. Voisin acknowledges funding from Google; A.J.B. acknowledges funding from Health Data Research UK Substantive Site Award; D.H. acknowledges funding from Howard Hughes Medical Institute; S.B. acknowledges funding from Instituto de Salud Carlos III; S.-S.K. and K.T. acknowledge funding from Japan Agency for Medical Research and Development (AMED); S. Ogishima acknowledges funding from Japan Agency for Medical Research and Development (AMED) grant #20kk0205014h0005; C.Y. and K. Kosaki acknowledge funding from Japan Agency for Medical Research and Development (AMED) grant #JP18kk0205012; GEM Japan acknowledges funding from Japan Agency for Medical Research and Development (AMED) grants #19kk0205014h0004, #20kk0205014h0005, #20kk0205013h0005, #20kk0205012h0005, #20km0405401h0003, and #19km0405001h0104; J.R. acknowledges funding from La Caixa Foundation under project #LCF/PR/GN13/50260009; R.R.F. acknowledges funding from Mayo Clinic Center for Individualized Medicine; Y.J. and S.E.W. acknowledge funding from Ministère de l'Économie et de l'Innovation du Québec for the Can-SHARE Connect Project; S.E.W. and S.O.M.D. acknowledge funding from Ministère de l'Économie et de l'Innovation du Québec for the Can-SHARE grant #141210; M.A.H., M.C.M.-T., J.O.J., H.E.P., and P.N.R. acknowledge funding from Monarch Initiative grant #R24OD011883 and Phenomics First NHGRI grant #1RM1HG010860; A.L.M. and E.B. acknowledge funding from MRC grant #MC_PC_19024; P.T. acknowledges funding from National University of Singapore and Agency for Science, Technology and Research; J.M.C. acknowledges funding from NHGRI; A.H.W. acknowledges funding from NHGRI awards K99HG010157, R00HG010157, and R35HG011949; A.M.-J., K.N., D.P.H., O.M.H., T.F.B., and Z.S. acknowledge funding from NHMRC grants #GNT1113531 and #GNT2000001; D.L.C. acknowledges funding from NHMRC Ideas grant #1188098; A.B.S. acknowledges funding from NHMRC Investigator Fellowship grant #APP177524; J.M.C. and L.D.S. acknowledge funding from NIH; A.A.P. acknowledges funding from NIH Anvil; A.V.S. acknowledges funding from NIH contract #HHSN268201800002I (TOPMed Informatics Research Center); S.U. acknowledges funding from NIH ENCODE grant #UM1HG009443; M.C.M.-T. and M.A.H. acknowledge funding from NIH grant #1U13CA221044; R.J.C. acknowledges funding from NIH grants #1U24HG010262 and #1U2COD023196; M.G. acknowledges funding from NIH grant #R00HG007940; J.B.A., S.L., P.G., E.B., H.L.R., and L.S. acknowledge funding from NIH grant #U24HG011025; K.P.E. acknowledges funding from NIH grant #U2C-RM-160010; J.A.E. acknowledges funding from NIH NCATS grant #U24TR002306; M.M. acknowledges funding from NIH NCI contract #HHSN261201400008c and ID/IQ Agreement #17X146 under contract #HHSN2612015000031 and #75N91019D00024; R.M.C.-D. acknowledges funding from NIH NCI grant #R01CA237118; M. Cline acknowledges funding from NIH NCI grant #U01CA242954; K.P.E. acknowledges funding from NIH NCI ITCR grant #1U24CA231877-01; O.L.G. acknowledges funding from NIH NCI ITCR grant #U24CA237719; R.L.G. acknowledges funding from NIH NCI task order #17X147F10 under contract #HHSN261200800001E; A.F.R. acknowledges funding from NIH NHGRI grant #RM1HG010461; N.M. and L.J.Z. acknowledge funding from NIH NHGRI grant #U24HG006941; R.R.F., T.H. Nelson, L.J.B., and H.L.R. acknowledge funding from NIH NHGRI grant #U41HG006834; B.J.W. acknowledges funding from NIH NHGRI grant #UM1HG009443A; M. Cline acknowledges funding from NIH NHLBI BioData Catalyst Fellowship grant #5118777; M.M. acknowledges funding from NIH NHLBI BioData Catalyst Program grant #1OT3HL142478-01; N.C.S. acknowledges funding from NIH NIGMS grant #R35-GM128636; M.C.M.-T., M.A.H., P.N.R., and R.R.F. acknowledge funding from NIH NLM contract #75N97019P00280; E.B. and A.L.M. acknowledge funding from NIHR; R.G. acknowledges funding from Project Ris3CAT VEIS; S.B. acknowledges funding from RD-Connect, Seventh Framework Program grant #305444; J.K. acknowledges funding from Robertson Foundation; S.B. and A.J.B. acknowledge funding from Solve-RD, EU Horizon 2020 grant #779257; T.S. and S. Oesterle acknowledge funding from Swiss Institute of Bioinformatics (SIB) and Swiss Personalized Health Network (SPHN), supported by the Swiss State Secretariat for Education, Research and Innovation SERI; S.J.M.J. acknowledges funding from Terry Fox Research Institute; A.E.H., M.P.B., M. Cupak, M.F., and J.F. acknowledge funding from the Digital Technology Supercluster; D.F.V. acknowledges funding from the Australian Medical Research Future Fund, as part of the Genomics Health Futures Mission grant #76749; M. Baudis acknowledges funding from the BioMedIT Network project of Swiss Institute of Bioinformatics (SIB) and Swiss Personalized Health Network (SPHN); B.M.K. acknowledges funding from the Canada Research Chair in Law and Medicine and CIHR grant #SBD-163124; D.S., G.I.S., M.A.K., S.B., S.S., and T.H. Nyrönen acknowledge funding from the EU Horizon 2020 Beyond 1 Million Genomes (B1MG) Project grant #951724; P.F., A.D.Y., F.C., H.S., I.U.L., D. Gupta, M. Courtot, S.E.H., T. Burdett, T.M.K., and S.F. acknowledge funding from the European Molecular Biology Laboratory; Y.J. and S.E.W. acknowledge funding from the Government of Canada; P.G. acknowledges funding from the Government of Canada through Genome Canada and the Ontario Genomics Institute (OGI-206); J.Z. acknowledges funding from the Government of Ontario; C.K.Y. acknowledges funding from the Government of Ontario, Canada Foundation for Innovation; C. Viner and M.M.H. acknowledge funding from the Natural Sciences and Engineering Research Council of Canada (grant #RGPIN-2015-03948 to M.M.H. and Alexander Graham Bell Canada Graduate Scholarship to C.V.); K.K.-L. acknowledges funding from the Program for Integrated Database of Clinical and Genomic Information; J.K. acknowledges funding from the Robertson Foundation; D.F.V. acknowledges funding from the Victorian State Government through the Operational Infrastructure Support (OIS) Program; A.M.L., R.N., and H.V.F. acknowledge funding from Wellcome (collaborative award); F.C., H.S., P.F., and S.E.H. acknowledge funding from Wellcome Trust grant #108749/Z/15/Z; A.D.Y., H.S., I.U.L., M. Courtot, H.E.P., P.F., and T.M.K. acknowledge funding from Wellcome Trust grant #201535/Z/16/Z; A.M., J.K.B., R.J.M., R.M.D., and T.M.K. acknowledge funding from Wellcome Trust grant #206194; E.B., P.F., P.G., and S.F. acknowledge funding from Wellcome Trust grant #220544/Z/20/Z; A. Hamosh acknowledges funding from NIH NHGRI grant U41HG006627 and U54HG006542; J.S.H. acknowledges funding from National Taiwan University #91F701-45C and #109T098-02; the work of K.W.R. was supported by the Intramural Research Program of the National Library of Medicine, NIH. For the purpose of open access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission. H.V.F. acknowledges funding from Wellcome Grant 200990/A/16/Z 'Designing, developing and delivering integrated foundations for genomic medicine'. ; Peer reviewed
BASE