Physiological mechanisms to cope with Cr(VI) toxicity in lettuce: can lettuce be used in Cr phytoremediation?
In: Environmental science and pollution research: ESPR, Band 23, Heft 15, S. 15627-15637
ISSN: 1614-7499
3 Ergebnisse
Sortierung:
In: Environmental science and pollution research: ESPR, Band 23, Heft 15, S. 15627-15637
ISSN: 1614-7499
High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe–He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by ∼ 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures ; The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787- NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Econom´ıa y Competitividad of Spain under grants FIS2014- 53371-C04, RTI2018-095979, the Severo Ochoa Program SEV-2014-0398 and the Mar´ıa de Maetzu Program MDM-2016-0692; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT ...
BASE
Within the framework of xenon-based double beta decay experiments, we propose the possibility to improve the background rejection of an electroluminescent Time Projection Chamber (EL TPC) by reducing the diffusion of the drifting electrons while keeping nearly intact the energy resolution of a pure xenon EL TPC. Based on state-of-the-art microscopic simulations, a substantial addition of helium, around 10 or 15 %, may reduce drastically the transverse diffusion down to 2.5 mm/m from the 10.5 mm/m of pure xenon. The longitudinal diffusion remains around 4 mm/m. Light production studies have been performed as well. They show that the relative variation in energy resolution introduced by such a change does not exceed a few percent, which leaves the energy resolution practically unchanged. The technical caveats of using photomultipliers close to an helium atmosphere are also discussed in detail ; The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economía y Competitividad of Spain under grants FIS2014-53371-C04, the Severo Ochoa Program SEV-2014-0398 and the María de Maetzu Program MDM-2016-0692; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT and FEDER through the program COMPETE, projects PTDC/FIS-NUC/2525/2014 and UID/FIS/04559/2013; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M) and de-sc0017721 (University of Texas at Arlington); and the University of Texas at Arlington. We acknowledge partial support from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreements No. 690575 and 674896
BASE