BACKGROUND: The burden of ischemic heart disease (IHD) is high. There is limited information on the burden of IHD in identified high risk areas like Central Asia (CA) which is comprised of Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Turkmenistan, Mongolia, Uzbekistan and Tajikistan. This study addresses the burden of IHD in CA at the regional and country levels. METHODS: Using data from the latest iteration of the Global Burden of Disease Study (GBD), this study provides age-adjusted mortality, prevalence, and Disability Adjusted Life Years (DALYs) of IHD by sex in the CA region, and national levels for countries in this region from 1990 to 2017. RESULTS: The CA region has a higher IHD burden than the rest of the world over the studied period. Amongst the countries within this region, age-standardized mortality and DALY rates in Uzbekistan are the highest not only in CA but worldwide, while Armenia consistently has the lowest IHD burden in CA. Unhealthy diet, high systolic blood pressure and LDL-cholesterol are the risk factors with the highest attributable IHD DALYs. CONCLUSION: Increasing burden of IHD over time in CA can be partially explained by the economic crisis in the 1990s. There is considerable variation in IHD DALY rates among countries in the CA region. The reasons for such differences are likely multifactorial such as differences in risk factors distribution, health care effectiveness, political, social and economic factors.
WOS: 000393031600001 ; PubMed ID: 27939304 ; Background: The potential for global collaborations to better inform public health policy regarding major non-hypercholesterolaemia (FH), a common genetic disorder associated with premature cardiovascular disease, is yet to be reliably ascertained using similar approaches. The European Atherosclerosis Society FH Studies Collaboration (EAS FHSC) is a new initiative of international stakeholders which will help establish a global FH registry to generate large-scale, robust data on the burden of FH worldwide. Methods: The EAS FHSC will maximise the potential exploitation of currently available and future FH data (retrospective and prospective) by bringing together regional/national/international data sources with access to individuals with a clinical and/or genetic diagnosis of heterozygous or homozygous FH. A novel bespoke electronic platform and FH Data Warehouse will be developed to allow secure data sharing, validation, cleaning, pooling, harmonisation and analysis irrespective of the source or format. Standard statistical procedures will allow us to investigate cross-sectional associations, patterns of real-world practice, trends over time, and analyse risk and outcomes (e.g. cardiovascular outcomes, all-cause death), accounting for potential confounders and subgroup effects. Conclusions: The EAS FHSC represents an excellent opportunity to integrate individual efforts across the world to tackle the global burden of FH. The information garnered from the registry will help reduce gaps in knowledge, inform best practices, assist in clinical trials design, support clinical guidelines and policies development, and ultimately improve the care of FH patients. (C) 2016 Elsevier Ireland Ltd. ; Pfizer Independent Grant for Learning Change [16157823]; AmgenAmgen; MSD; Sanofi-AventisSanofi-Aventis; Latvian State Research Programme BIOMEDICINE; Czech RepublicCzech Republic Government [MZ CR AZV 15-28277A, 16-29084A] ; The present project has received support from a Pfizer Independent Grant for Learning & Change 2014 (No: 16157823) and from investigator initiated unrestricted research grants to the European Atherosclerosis Society from Amgen, MSD, and Sanofi-Aventis. The project in Latvia was supported by the Latvian State Research Programme BIOMEDICINE. The project in Czech Republic was partly supported by grants MZ CR AZV 15-28277A and 16-29084A.
WOS: 000445908000037 ; PubMed ID: 30270054 ; Background and aims: Management of familial hypercholesterolaemia (FH) may vary across different settings due to factors related to population characteristics, practice, resources and/or policies. We conducted a survey among the worldwide network of EAS FHSC Lead Investigators to provide an overview of FH status in different countries. Methods: Lead Investigators from countries formally involved in the EAS FHSC by mid-May 2018 were invited to provide a brief report on FH status in their countries, including available information, programmes, initiatives, and management. Results: 63 countries provided reports. Data on FH prevalence are lacking in most countries. Where available, data tend to align with recent estimates, suggesting a higher frequency than that traditionally considered. Low rates of FH detection are reported across all regions. National registries and education programmes to improve FH awareness/knowledge are a recognised priority, but funding is often lacking. In most countries, diagnosis primarily relies on the Dutch Lipid Clinics Network criteria. Although available in many countries, genetic testing is not widely implemented (frequent cost issues). There are only a few national official government programmes for FH. Under-treatment is an issue. FH therapy is not universally reimbursed. PCSK9-inhibitors are available in similar to 2/3 countries. Lipoprotein-apheresis is offered in similar to 60% countries, although access is limited. Conclusions: FH is a recognised public health concern. Management varies widely across countries, with overall suboptimal identification and under-treatment. Efforts and initiatives to improve FH knowledge and management are underway, including development of national registries, but support, particularly from health authorities, and better funding are greatly needed. ; Pfizer Independent Grant for Learning Change 2014 [16157823]; AmgenAmgen; MSD; Sanofi-AventisSanofi-Aventis ; The EAS FHSC project has received support from a Pfizer Independent Grant for Learning & Change 2014 (No: 16157823) and from investigator-initiated unrestricted research grants to the European Atherosclerosis Society from Amgen, MSD, and Sanofi-Aventis.
Background and aims: Management of familial hypercholesterolaemia (FH) may vary across different settings due to factors related to population characteristics, practice, resources and/or policies. We conducted a survey among the worldwide network of EAS FHSC Lead Investigators to provide an overview of FH status in different countries. Methods: Lead Investigators from countries formally involved in the EAS FHSC by mid-May 2018 were invited to provide a brief report on FH status in their countries, including available information, programmes, initiatives, and management. Results: 63 countries provided reports. Data on FH prevalence are lacking in most countries. Where available, data tend to align with recent estimates, suggesting a higher frequency than that traditionally considered. Low rates of FH detection are reported across all regions. National registries and education programmes to improve FH awareness/knowledge are a recognised priority, but funding is often lacking. In most countries, diagnosis primarily relies on the Dutch Lipid Clinics Network criteria. Although available in many countries, genetic testing is not widely implemented (frequent cost issues). There are only a few national official government programmes for FH. Under-treatment is an issue. FH therapy is not universally reimbursed. PCSK9-inhibitors are available in similar to 2/3 countries. Lipoprotein-apheresis is offered in similar to 60% countries, although access is limited. Conclusions: FH is a recognised public health concern. Management varies widely across countries, with overall suboptimal identification and under-treatment. Efforts and initiatives to improve FH knowledge and management are underway, including development of national registries, but support, particularly from health authorities, and better funding are greatly needed.
Background The amount of resources, particularly prepaid resources, available for health can affect access to health care and health outcomes. Although health spending tends to increase with economic development, tremendous variation exists among health financing systems. Estimates of future spending can be beneficial for policy makers and planners, and can identify financing gaps. In this study, we estimate future gross domestic product (GDP), all-sector government spending, and health spending disaggregated by source, and we compare expected future spending to potential future spending. Methods We extracted GDP, government spending in 184 countries from 1980-2015, and health spend data from 1995-2014. We used a series of ensemble models to estimate future GDP, all-sector government spending, development assistance for health, and government, out-of-pocket, and prepaid private health spending through 2040. We used frontier analyses to identify patterns exhibited by the countries that dedicate the most funding to health, and used these frontiers to estimate potential health spending for each low-income or middle-income country. All estimates are inflation and purchasing power adjusted. Findings We estimated that global spending on health will increase from US$9.21 trillion in 2014 to $24.24 trillion (uncertainty interval [UI] 20.47-29.72) in 2040. We expect per capita health spending to increase fastest in upper-middle-income countries, at 5.3% (UI 4.1-6.8) per year. This growth is driven by continued growth in GDP, government spending, and government health spending. Lower-middle income countries are expected to grow at 4.2% (3.8-4.9). High-income countries are expected to grow at 2.1% (UI 1.8-2.4) and low-income countries are expected to grow at 1.8% (1.0-2.8). Despite this growth, health spending per capita in low-income countries is expected to remain low, at $154 (UI 133-181) per capita in 2030 and $195 (157-258) per capita in 2040. Increases in national health spending to reach the level of the countries who spend the most on health, relative to their level of economic development, would mean $321 (157-258) per capita was available for health in 2040 in low-income countries. Interpretation Health spending is associated with economic development but past trends and relationships suggest that spending will remain variable, and low in some low-resource settings. Policy change could lead to increased health spending, although for the poorest countries external support might remain essential. ; Peer reviewed
Achieving universal health coverage (UHC) requires health financing systems that provide prepaid pooled resources for key health services without placing undue financial stress on households. Understanding current and future trajectories of health financing is vital for progress towards UHC. We used historical health financing data for 188 countries from 1995 to 2015 to estimate future scenarios of health spending and pooled health spending through to 2040.We extracted historical data on gross domestic product (GDP) and health spending for 188 countries from 1995 to 2015, and projected annual GDP, development assistance for health, and government, out-of-pocket, and prepaid private health spending from 2015 through to 2040 as a reference scenario. These estimates were generated using an ensemble of models that varied key demographic and socioeconomic determinants. We generated better and worse alternative future scenarios based on the global distribution of historic health spending growth rates. Last, we used stochastic frontier analysis to investigate the association between pooled health resources and UHC index, a measure of a country's UHC service coverage. Finally, we estimated future UHC performance and the number of people covered under the three future scenarios.
BACKGROUND: Comprehensive and comparable estimates of health spending in each country are a key input for health policy and planning, and are necessary to support the achievement of national and international health goals. Previous studies have tracked past and projected future health spending until 2040 and shown that, with economic development, countries tend to spend more on health per capita, with a decreasing share of spending from development assistance and out-of-pocket sources. We aimed to characterise the past, present, and predicted future of global health spending, with an emphasis on equity in spending across countries. METHODS: We estimated domestic health spending for 195 countries and territories from 1995 to 2016, split into three categories-government, out-of-pocket, and prepaid private health spending-and estimated development assistance for health (DAH) from 1990 to 2018. We estimated future scenarios of health spending using an ensemble of linear mixed-effects models with time series specifications to project domestic health spending from 2017 through 2050 and DAH from 2019 through 2050. Data were extracted from a broad set of sources tracking health spending and revenue, and were standardised and converted to inflation-adjusted 2018 US dollars. Incomplete or low-quality data were modelled and uncertainty was estimated, leading to a complete data series of total, government, prepaid private, and out-of-pocket health spending, and DAH. Estimates are reported in 2018 US dollars, 2018 purchasing-power parity-adjusted dollars, and as a percentage of gross domestic product. We used demographic decomposition methods to assess a set of factors associated with changes in government health spending between 1995 and 2016 and to examine evidence to support the theory of the health financing transition. We projected two alternative future scenarios based on higher government health spending to assess the potential ability of governments to generate more resources for health. FINDINGS: Between 1995 and 2016, health spending grew at a rate of 4·00% (95% uncertainty interval 3·89-4·12) annually, although it grew slower in per capita terms (2·72% [2·61-2·84]) and increased by less than $1 per capita over this period in 22 of 195 countries. The highest annual growth rates in per capita health spending were observed in upper-middle-income countries (5·55% [5·18-5·95]), mainly due to growth in government health spending, and in lower-middle-income countries (3·71% [3·10-4·34]), mainly from DAH. Health spending globally reached $8·0 trillion (7·8-8·1) in 2016 (comprising 8·6% [8·4-8·7] of the global economy and $10·3 trillion [10·1-10·6] in purchasing-power parity-adjusted dollars), with a per capita spending of US$5252 (5184-5319) in high-income countries, $491 (461-524) in upper-middle-income countries, $81 (74-89) in lower-middle-income countries, and $40 (38-43) in low-income countries. In 2016, 0·4% (0·3-0·4) of health spending globally was in low-income countries, despite these countries comprising 10·0% of the global population. In 2018, the largest proportion of DAH targeted HIV/AIDS ($9·5 billion, 24·3% of total DAH), although spending on other infectious diseases (excluding tuberculosis and malaria) grew fastest from 2010 to 2018 (6·27% per year). The leading sources of DAH were the USA and private philanthropy (excluding corporate donations and the Bill & Melinda Gates Foundation). For the first time, we included estimates of China's contribution to DAH ($644·7 million in 2018). Globally, health spending is projected to increase to $15·0 trillion (14·0-16·0) by 2050 (reaching 9·4% [7·6-11·3] of the global economy and $21·3 trillion [19·8-23·1] in purchasing-power parity-adjusted dollars), but at a lower growth rate of 1·84% (1·68-2·02) annually, and with continuing disparities in spending between countries. In 2050, we estimate that 0·6% (0·6-0·7) of health spending will occur in currently low-income countries, despite these countries comprising an estimated 15·7% of the global population by 2050. The ratio between per capita health spending in high-income and low-income countries was 130·2 (122·9-136·9) in 2016 and is projected to remain at similar levels in 2050 (125·9 [113·7-138·1]). The decomposition analysis identified governments' increased prioritisation of the health sector and economic development as the strongest factors associated with increases in government health spending globally. Future government health spending scenarios suggest that, with greater prioritisation of the health sector and increased government spending, health spending per capita could more than double, with greater impacts in countries that currently have the lowest levels of government health spending. INTERPRETATION: Financing for global health has increased steadily over the past two decades and is projected to continue increasing in the future, although at a slower pace of growth and with persistent disparities in per-capita health spending between countries. Out-of-pocket spending is projected to remain substantial outside of high-income countries. Many low-income countries are expected to remain dependent on development assistance, although with greater government spending, larger investments in health are feasible. In the absence of sustained new investments in health, increasing efficiency in health spending is essential to meet global health targets. FUNDING: Bill & Melinda Gates Foundation. ; Bill & Melinda Gates Foundation ; Sí
Background: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. Methods: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. Findings: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable). Interpretation: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. Funding: Bill & Melinda Gates Foundation.
BACKGROUND: Traumatic brain injury (TBI) and spinal cord injury (SCI) are increasingly recognised as global health priorities in view of the preventability of most injuries and the complex and expensive medical care they necessitate. We aimed to measure the incidence, prevalence, and years of life lived with disability (YLDs) for TBI and SCI from all causes of injury in every country, to describe how these measures have changed between 1990 and 2016, and to estimate the proportion of TBI and SCI cases caused by different types of injury. METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016 to measure the global, regional, and national burden of TBI and SCI by age and sex. We measured the incidence and prevalence of all causes of injury requiring medical care in inpatient and outpatient records, literature studies, and survey data. By use of clinical record data, we estimated the proportion of each cause of injury that required medical care that would result in TBI or SCI being considered as the nature of injury. We used literature studies to establish standardised mortality ratios and applied differential equations to convert incidence to prevalence of long-term disability. Finally, we applied GBD disability weights to calculate YLDs. We used a Bayesian meta-regression tool for epidemiological modelling, used cause-specific mortality rates for non-fatal estimation, and adjusted our results for disability experienced with comorbid conditions. We also analysed results on the basis of the Socio-demographic Index, a compound measure of income per capita, education, and fertility. FINDINGS: In 2016, there were 27·08 million (95% uncertainty interval [UI] 24·30-30·30 million) new cases of TBI and 0·93 million (0·78-1·16 million) new cases of SCI, with age-standardised incidence rates of 369 (331-412) per 100 000 population for TBI and 13 (11-16) per 100 000 for SCI. In 2016, the number of prevalent cases of TBI was 55·50 million (53·40-57·62 million) and of SCI was 27·04 million (24·98-30·15 million). From 1990 to 2016, the age-standardised prevalence of TBI increased by 8·4% (95% UI 7·7 to 9·2), whereas that of SCI did not change significantly (-0·2% [-2·1 to 2·7]). Age-standardised incidence rates increased by 3·6% (1·8 to 5·5) for TBI, but did not change significantly for SCI (-3·6% [-7·4 to 4·0]). TBI caused 8·1 million (95% UI 6·0-10·4 million) YLDs and SCI caused 9·5 million (6·7-12·4 million) YLDs in 2016, corresponding to age-standardised rates of 111 (82-141) per 100 000 for TBI and 130 (90-170) per 100 000 for SCI. Falls and road injuries were the leading causes of new cases of TBI and SCI in most regions. INTERPRETATION: TBI and SCI constitute a considerable portion of the global injury burden and are caused primarily by falls and road injuries. The increase in incidence of TBI over time might continue in view of increases in population density, population ageing, and increasing use of motor vehicles, motorcycles, and bicycles. The number of individuals living with SCI is expected to increase in view of population growth, which is concerning because of the specialised care that people with SCI can require. Our study was limited by data sparsity in some regions, and it will be important to invest greater resources in collection of data for TBI and SCI to improve the accuracy of future assessments. FUNDING: Bill & Melinda Gates Foundation. ; Bill & Melinda Gates Foundation ; We acknowledge the funding and support of the Bill & Melinda Gates Foundation. AK was supported by the Miguel Servet contract, which was financed by the CP13/00150 and PI15/00862 projects integrated into the National Research, Development, and Implementation,and funded by the Instituto de Salud Carlos III General Branch Evaluation and Promotion of Health Research and the European Regional Development Fund (ERDF-FEDER). AMS is supported by the Egyptian Fulbright Mission Program. AF acknowledges the Federal University of Sergipe (Sergipe, Brazil). AA received financial assistance from the Indian Department of Science and Technology (New Delhi, India) through the INSPIRE faculty programme. AS is supported by Health Data Research UK. DJS is supported by the South African Medical Research Council. AB is supported by the Public Health Agency of Canada. SMSI received a senior research fellowship from the Institute for Physical Activity and Nutrition, Deakin University (Waurn Ponds, VIC, Australia), and a career transition grant from the High Blood Pressure Research Council of Australia. FP and CF acknowledge support from the European Union (FEDER funds POCI/01/0145/FEDER/007728 and POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundação para a Ciência e a Tecnologia, and Ministério da Educação e Ciência) under the Partnership Agreements PT2020 UID/MULTI/04378/2013 and PT2020 UID/QUI/50006/2013. TB acknowledges financial support from the Institute of Medical Research and Medicinal Plant Studies, Yaoundé, Cameroon. AM of Imperial College London is grateful for support from the Northwest London National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research andCare and the Imperial NIHR Biomedical Research Centre. KD is funded by a Wellcome Trust Intermediate Fellowship in Public Health and Tropical Medicine (grant number 201900). PSA is supported by an Australian National Health and Medical Research Council Early Career Fellowship. RT-S was supported in part by grant number PROMETEOII/2015/021 from Generalitat Valenciana and the national grant PI17/00719 from ISCIII-FEDER. The Serbian part of this contribution (by MJ) has been co-financed with grant OI175014 from the Serbian Ministry of Education, Science and Technological Development; publication of results was not contingent upon the Ministry's approval. MMMSM acknowledges support from the Serbian Ministry of Education, Science and Technological Development (contract 175087). MM's research was supported by the NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust (London, UK) and King's College London. The views expressed are those of the authors and not necessarily those of the UK National Health Service, the NIHR, or the UK Department of Health. TWB was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt professor award, which was funded by the German Federal Ministry of Education and Research ; Sí
Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020.
Background Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. Methods We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. Findings Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247-308]) and second leading cause of deaths (9.0 million [8.8-9.4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34-44] and DALYs by 15% [9-21]) whereas their age-standardised rates decreased (deaths by 28% [26-30] and DALYs by 27% [24-31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42.2% [38.6-46.1]), migraine (16.3% [11.7-20.8]), Alzheimer's and other dementias (10.4% [9.0-124]), and meningitis (7.9% [6.6-10.4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1.12 [1.05-1.20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0.7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88.8% (86.5-90.9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22.3% [11.8-35.1] of DALYs are risk attributable) and idiopathic epilepsy (14.1% [10.8-17.5] of DALYs are risk attributable). Interpretation Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. Copyright (C) The Author(s). Published by Elsevier Ltd.
Publisher´s version (útgefin grein). ; Background Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders.Methods We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach.Findings Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable).Interpretation Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. ; ROA is funded by the National Institutes of Health (U01HG010273). SMA acknowledges the International Centre for Casemix and Clinical Coding, Faculty of Medicine, National University of Malaysia and Department of Health Policy and Management, Faculty of Public Health, Kuwait University for the approval and support to participate in this research project. AAw acknowledges funding support from Department of Science and Technology, Government of India, New Delhi, through INSPIRE Faculty scheme. TBA acknowledges partial funding from the Institute of Medical Research and Medicinal Plant Studies. ABa is supported by the Public Health Agency of Canada. TWB was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor Award, funded by the Federal Ministry of Education and Research. MSBS acknowledges support from the Australian Government Research and Training Program scholarship for a PhD degree at the Australian National University, Australia. JJC is supported by the Swedish Heart and Lung Foundation. FCar is supported by the European Union (FEDER funds POCI/01/0145/FEDER/007728 and POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundacao para a Ciencia e a Tecnologia and Ministerio da Educacao e Ciencia) under the Partnership Agreements PT2020 UID/MULTI/04378/2013 and PT2020UID/QUI/50006/2013. EC is supported by an Australian Research Council Future Fellowship (FT3 140100085). KD is supported by a Wellcome Trust [Grant Number 201900] as part of his International Intermediate Fellowship. EF is supported by the European Union (FEDER funds POCI/01/0145/FEDER/007728 and POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundacao para a Ciencia e a Tecnologia and Ministerio da Educacao e Ciencia) under the Partnership Agreements PT2020 UID/MULTI/04378/2013 and PT2020UID/QUI/50006/2013. SMSI is funded by the Institute for Physical Activity and Nutrition (IPAN), Deakin University and received funding from High Blood Pressure Research Council of Australia. YKa is a DBT/Wellcome Trust India Alliance Fellow in Public Health. YJK is supported by the Office of Research and Innovation at Xiamen University Malaysia. BL acknowledges funding from the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre. WDL is supported in part by U10NS086484 NINDS. SLo is funded by the German Federal Ministry of Education and Research (nutriCARD, grant agreement number 01EA1411A). RML is supported by a National Health and Medical Research Council (NHMRC) of Australia Senior Research Fellowship. AMa and the Imperial College London are grateful for support from the NW London NIHR Collaboration for Leadership in Applied Health Research and Care. JJM is supported by the Danish National Research Foundation (Niels Bohr Professorship), and the John Cade Fellowship (APP1056929) from NHMRC. TMei acknowledges additional institutional support from the Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Jena-Halle-Leipzig. IMV is supported by the Sistema Nacional de Investigacion (Panama). MOO is supported by SIREN U54 U54HG007479 and SIBS Genomics R01NS107900 grants. AMS was supported by a fellowship from the Egyptian Fulbright Mission Program. MMSM acknowledges the support from the Ministry of Education, Science and Technological Development, Republic of Serbia (contract no 175087). AShe is supported by Health Data Research UK. MBS' work on traumatic brain injury is supported by grants NIH U01 NS086090 (PI G Manley) from the National Institutes of Health (NIH) and DoD W81XWH-14-2-0176 (PI G Manley) from the United States Department of Defense. RTS is supported in part by grant number PROMETEOII/2015/021 from Generalitat Valenciana and the national grant PI17/00719 from ISCIIIFEDER. AGT was supported by a Fellowship from the NHMRC (Australia; 1042600. KBT acknowledges funding supports from the Maurice Wilkins Centre for Biodiscovery, Cancer Society of New Zealand, Health Research Council, Gut Cancer Foundation, and the University of Auckland. CY acknowledges support from the National Natural Science Foundation of China (grant number 81773552) and the Chinese NSFC International Cooperation and Exchange Program (grant number 71661167007). ; "Peer Reviewed"
BACKGROUND: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. METHODS: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. FINDINGS: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247-308]) and second leading cause of deaths (9·0 million [8·8-9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34-44] and DALYs by 15% [9-21]) whereas their age-standardised rates decreased (deaths by 28% [26-30] and DALYs by 27% [24-31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6-46·1]), migraine (16·3% [11·7-20·8]), Alzheimer's and other dementias (10·4% [9·0-12·1]), and meningitis (7·9% [6·6-10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05-1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5-90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8-35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8-17·5] of DALYs are risk attributable). INTERPRETATION: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. FUNDING: Bill & Melinda Gates Foundation. ; Bill & Melinda Gates Foundation. ; Sí
Background: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. Methods: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. Findings: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable). Interpretation: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. Funding: Bill & Melinda Gates Foundation.
BACKGROUND:Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. METHODS:Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0-100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target-1 billion more people benefiting from UHC by 2023-we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. FINDINGS:Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2-47·5) in 1990 to 60·3 (58·7-61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9-3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010-2019 relative to 1990-2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach $1398 pooled health spending per capita (US$ adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6-421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0-3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5-1040·3]) residing in south Asia. INTERPRETATION:The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people-the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close-or how far-all populations are in benefiting from UHC. FUNDING:Bill & Melinda Gates Foundation.