International Conference on Renewable Energy and Environment Engineering (REEE 2018, Paris, France) ; The feasibility of using some of the current coal mining facilities in the Ruhr region as lower reservoir for a pumped storage project has been currently analyzed by a group of five partners in Germany (University Duisburg Essen, uR hr U iversity Bochum, hR ine Ruhr Institute for Social esearR ch and Political Consultancy ISPR , RAG AG and DMT), supported by the European Union.
The design of machining fixtures for aeronautical parts is strongly based in the knowledge of the fixture designer, and it comprises certain repetitive tasks. An analysis of the design process allows us to state its suitability for developing Knowledge Based Engineering (KBE) applications in order to capture the knowledge, and to systematize and automate the designs.This work justifies the importance of fixtures for High Speed Milling (HSM), and explains the development of a KBE application to automate the design and manufacturing of such elements. The application is the outcome of a project carried out in collaboration with the company EADS.In the development process, a specific methodology was used in order to represent the knowledge in a semi-structured way and to document the information needed to define the system. The developed KBE application is independent of the parts design system. This makes it necessary to use an interface to input the part geometry into the KBE application, where it is analyzed in order to extract the relevant information for the fixture design process. The results obtained from the application come in three different ways: raw material drawings, fixture 3D solid models, and text files (Bill Of Materials – BOM, and Numerical Control – NC programs). All the results are exported to other applications for use in other tasks. The designer interacts with the application through an ad hoc interface, where he is asked to select or input some data and where the results are also visualized. The prototype KBE application has been carried out in the ICAD development environment and the main interface is with the CAD/CAM system CATIA V4.
In the locality of Morata de Tajuña and surroundings there was an important settlement of gypsum pits and limekilns, together with other historical industries, now disappear. These activities were developed mainly during the 1960´s and 70´s, but its production decreased because of changes in the productive processes (substitution of discontinuous processes by continuous ones, higher kilns, etc.) (1). Nevertheless, some of these furnaces still remain, as well as ancient workers who have provided important information. Within the research project funded by the Madrid´s Government, entitled: Industrial archaeology: Conservation of the mining and metallurgical heritage of Madrid (IV), ancient gypsum pits have been identified and inventoried. The ancient gypsiferous extraction history was recovered and the productive processes fluxes were reconstructed. The state of the heritage is evaluated and the conservation of some of the elements is recommended. Likewise, the intangible heritage was also investigated, being able to show a legend related with these kilns. ; En Morata de Tajuña y pueblos limítrofes hay una importante tradición yesera y calera, así como de otras industrias de materiales de la construcción ya desaparecidas, sobre todo en los años 60-70 del pasado siglo, debido a cambios en los sistemas productivos (paso de sistemas discontinuos a continuos, hornos mayores, etc.) (1). Por eso aún se conservan algunos hornos y también viven antiguos productores, a los que hemos podido preguntar sobre los procesos productivos. En el marco de un proyecto de investigación de la Consejería de Educación de la Comunidad de Madrid titulado "Arqueología Industrial: conservación del patrimonio minero-metalúrgico madrileño (IV)" se están identificando e inventariando viejas yeserías, recuperando la historia yesera local, reconstruyendo los flujos productivos y entrevistando a antiguos operarios. De esta manera, se pretende evaluar el estado del patrimonio, planteando la conservación de algunos de estos elementos.
9 pags., 6 figs., 4 tabs. ; Low-lying excited states in the N=32 isotope Ar50 were investigated by in-beam γ-ray spectroscopy following proton- and neutron-knockout, multinucleon removal, and proton inelastic scattering at the RIKEN Radioactive Isotope Beam Factory. The energies of the two previously reported transitions have been confirmed, and five additional states are presented for the first time, including a candidate for a 3- state. The level scheme built using γγ coincidences was compared to shell-model calculations in the sd-pf model space and to ab initio predictions based on chiral two- and three-nucleon interactions. Theoretical proton- and neutron-knockout cross sections suggest that two of the new transitions correspond to 2+ states, while the previously proposed 41+ state could also correspond to a 2+ state. ; We thank the RIKEN Nishina Center accelerator staff and the BigRIPS team for the stable operation of the high-intensity Zn beam and for the preparation of the secondary beam setting. This work has been supported by the JSPS Grant-in-Aid for Scientific Research JP16K05352, JP18K03639, JP16H02179, and JP18H05404, the RIKEN Special Postdoctoral Researcher Program, Colciencias–Convocatoria 617 Becas Doctorados Nacionales, the Ministry of Science and Technology of Vietnam through the Physics Development Program Grant No. ĐTĐLCN.25/18, HIC for FAIR, the Croatian Science Foundation under Projects No. 1257 and No. 7194, the European Regional Development Fund GINOP-2.3.3-15- 2016-00034 and the National Research, Development and Innovation Fund K128947 projects, the NKFIH (128072), the Spanish Ministerio de Economía y Competitividad under Contract No. FPA2017-84756-C4-2-P, the NRF Grants No. 2018R1A5A1025563 and No. 2019M7A1A1033186 funded by the Korean government, the MEXT as "Priority issue on post-K computer" (Elucidation of the fundamental laws and evolution of the universe), the Joint Institute for Computational Fundamental Science (JICFuS), the Ramón y Cajal program RYC-2017-22781 of the Spanish Ministry of Science, Innovation and Universities, the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project-ID 279384907–SFB 1245 and Grant No. BL 1513/1-1, the PRISMA Cluster of Excellence, and the BMBF under Contracts No. 05P15RDFN1, No. 05P18RDFN1, and No. 05P19RDFN1. TRIUMF receives funding via a contribution through the National Research Council Canada. Computations were performed with an allocation of computing resources on Cedar at WestGrid and Compute Canada, and on the Oak Cluster at TRIUMF managed by the University of British Columbia, Department of Advanced Research Computing (ARC). The development of MINOS was supported by the European Research Council (ERC) through Grant No. MINOS-258567.