We demonstrate four-and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FA(0.75)Cs(0.25)Sn(0.5)Pb(0.5)I(3), that can deliver 14.8% efficiency. By combining this material with a wider-band gap FA(0.83)Cs(0.17)Pb(I0.5Br0.5)(3) material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with > 1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable "all-perovskite" thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs. ; We thank M. T. Horantner for performing the Shockley-Queisser calculation. The research leading to these results has received funding from the Graphene Flagship (Horizon 2020 grant no. 696656 - GrapheneCore1), the Leverhulme Trust (grant RL-2012-001), the UK Engineering and Physical Sciences Research Council (grant EP/J009857/1 and EP/M020517/1), and the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement nos. 239578 (ALIGN) and 604032 (MESO). T.L. is funded by a Marie Sklodowska Curie International Fellowship under grant agreement H2O2IF-GA-2015-659225. A.B. is financed by IMEC (Leuven) in the framework of a joint Ph.D. program with Hasselt University. B.C. is a postdoctoral research fellow of the Research Fund Flanders (FWO). We also acknowledge the U.S. Office of Naval Research for support. We acknowledge the use of the University of Oxford Advanced Research Computing (ARC) facility (http://dx.doi.org/10.5281/zenodo.22558) and the ARCHER UK National Super-computing Service under the "AMSEC" Leadership project. We thank the Global Climate and Energy Project (GCEP) at Stanford University. All data pertaining to the conclusions of this work can be found in the main paper and the supplementary materials.
Emerging photovoltaics (PVs) focus on a variety of applications complementing large scale electricity generation. Organic, dye-sensitized, and some perovskite solar cells are considered in building integration, greenhouses, wearable, and indoor applications, thereby motivating research on flexible, transparent, semitransparent, and multi-junction PVs. Nevertheless, it can be very time consuming to find or develop an up-to-date overview of the state-of-the-art performance for these systems and applications. Two important resources for recording research cells efficiencies are the National Renewable Energy Laboratory chart and the efficiency tables compiled biannually by Martin Green and colleagues. Both publications provide an effective coverage over the established technologies, bridging research and industry. An alternative approach is proposed here summarizing the best reports in the diverse research subjects for emerging PVs. Best performance parameters are provided as a function of the photovoltaic bandgap energy for each technology and application, and are put into perspective using, e.g., the Shockley–Queisser limit. In all cases, the reported data correspond to published and/or properly described certified results, with enough details provided for prospective data reproduction. Additionally, the stability test energy yield is included as an analysis parameter among state-of-the-art emerging PVs. ; O.A. acknowledges the financial support from the VDI/VD Innovation + Technik GmbH (Project-title: PV-ZUM) and the SAOT funded by the German Research Foundation (DFG) in the framework of the German excellence initiative. C.J.B. acknowledges funding from DFG within INST 90/917-1 FUGG, the SFB 953 (DFG, project no. 182849149) and the IGK 2495 (Energy Conversion Systems—from Materials to Devices). C.J.B. further acknowledges the grants "ELF-PV—Design and development of solution processed functional materials for the next generations of PV technologies" (No. 44-6521a/20/4) and "Solar Factory of the Future" (FKZ 20.2-3410.5-4-5) and the SolTech Initiative by the Bavarian State Government. A.F.N. acknowledges support from FAPESP (Grant 2017/11986-5), Shell and the strategic importance of the support given by ANP (Brazil's National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. R.R.L. gratefully acknowledges support from the National Science Foundation under grant CBET-1702591. N.K. acknowledges funding by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office, Agreement Number 34351. J.N. thanks the European Research Council for support under the European Union's Horizon 2020 research and innovation program (grant agreement No 742708).
Improving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis. ; This article is based upon work from COST Action StableNextSol MP1307 supported by COST (European Cooperation in Science and Technology). M.V.K., E.A.K., V.B. and A.O. thank the financial support of the United States – Israel Binational Science Foundation (grant no. 2015757). E.A.K., A.A. and I.V.-F. acknowledge partial support from the SNaPSHoTs project in the framework of the German-Israeli bilateral R&D cooperation in the field of applied nanotechnology. M.S.L. thanks the financial support of National Science Foundation (ECCS, award #1610833). S.C., M.Manceau and M.Matheron thank the financial support of European Union's Horizon 2020 research and innovation programme under grant agreement no 763989 (APOLO project). F.D.R. and T.M.W. would like to acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) through the SPECIFIC Innovation and Knowledge Centre (EP/N020863/1) and express their gratitude to the Welsh Government for their support of the Ser Solar programme. P.A.T. acknowledges financial support from the Russian Science Foundation (project No. 19-73-30020). J.K. acknowledges the support by the Solar Photovoltaic Academic Research Consortium II (SPARC II) project, gratefully funded by WEFO. M.K.N. acknowledges financial support from Innosuisse project 25590.1 PFNM-NM, Solaronix, Aubonne, Switzerland. C.-Q.M. would like to acknowledge The Bureau of International Cooperation of Chinese Academy of Sciences for the support of ISOS11 and the Ministry of Science and Technology of China for the financial support (no. 2016YFA0200700). N.G.P. acknowledges financial support from the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT Future Planning (MSIP) of Korea under contracts NRF-2012M3A6A7054861 and NRF-2014M3A6A7060583 (Global Frontier R&D Program on Center for Multiscale Energy System). CSIRO's contribution to this work was conducted with funding support from the Australian Renewable Energy Agency (ARENA) through its Advancing Renewables Program. A.F.N gratefully acknowledges support from FAPESP (Grant 2017/11986-5) and Shell and the strategic importance of the support given by ANP (Brazil's National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. Y.-L.L. and Q.B. acknowledge support from the National Science Foundation Division of Civil, Mechanical and Manufacturing Innovation under award no. 1824674. S.D.S. acknowledges the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (HYPERION, grant agreement no. 756962), and the Royal Society and Tata Group (UF150033). The work at the National Renewable Energy Laboratory was supported by the US Department of Energy (DOE) under contract DE-AC36-08GO28308 with Alliance for Sustainable Energy LLC, the manager and operator of the National Renewable Energy Laboratory. The authors (J.J.B, J.M.L., M.O.R, K.Z.) acknowledge support from the 'De-risking halide perovskite solar cells' program of the National Center for Photovoltaics, funded by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technology Office. The views expressed in the article do not necessarily represent the views of the DOE or the US Government. H.J.S. acknowledges the support of EPSRC UK, Engineering and Physical Sciences Research Council. V.T. and M.Madsen acknowledge 'Villum Foundation' for funding of the project CompliantPV, under project no. 13365. M.Madsen acknowledges Danmarks Frie Forskningsfond, DFF FTP for funding of the project React-PV, no. 8022-00389B. M.G. and S.M.Z. thank the King Abdulaziz City for Science and technology (KACST) for financial support. S.V. acknowledges TKI-UE/Ministry of Economic Affairs for financial support of the TKI-UE toeslag project POP-ART (no. 1621103). RC thanks the grants for Development of New Faculty Staff, Ratchadaphiseksomphot Endowment Fund. A.D.C. gratefully acknowledges funding from the European Union's Horizon 2020 Research and Innovation Program (grant agreement no. 785219-GrapheneCore2 and no. 764047-ESPResSo). M.L.C. and H.X. acknowledges the support from Spanish MINECO for the grant GraPErOs (ENE2016-79282-C5-2-R), the OrgEnergy Excellence Network CTQ2016-81911- REDT, the Agència de Gestiód'Ajuts Universitaris i de Recerca (AGAUR) for the support to the consolidated Catalonia research group 2017 SGR 329 and the Xarxa de Referència en Materials Avançats per a l'Energia (Xarmae). ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant no. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya. ; Peer reviewed