In: Twin research and human genetics: the official journal of the International Society for Twin Studies (ISTS) and the Human Genetics Society of Australasia, Band 19, Heft 5, S. 418-421
In a recent GWAS of spontaneous dizygotic twinning, Mbarek et al. (The American Journal of Human Genetics, 2016, Vol 98, pp. 898–908) identified two SNPs, rs11031006 (near FSHB) and rs17293443 (in SMAD3). In the present note, we address the question how to present the results in terms of effect sizes in a manner that is comprehensible to the general audience (e.g., mothers of twins, readership of newspapers). We propose to avoid the standard effect sizes such as odds ratios and relative risk as these require some knowledge of probability theory. Rather, we convey the results in terms of the conditional probabilities, but expressed in natural language.
In: Twin research and human genetics: the official journal of the International Society for Twin Studies (ISTS) and the Human Genetics Society of Australasia, Band 27, Heft 1, S. 12-17
AbstractFamilial twinning and fertility traits were investigated in Nigerian mothers of dizygotic (DZ) twins (MoDZT; N = 972) and controls (N = 525) who responded to our person-to-person interview, which included questions on pregnancy history and family history of DZ twinning. Controls were defined as women who are not twins themselves and do not have twins in their first-degree relatives. Over 95% of the participants were Yoruba. We found that Nigerian MoDZT had an average of 4.0 (±2.6) pairs of twins among their relatives, and of these, the prevalence of DZ twins was significantly higher than that of monozygotic (MZ) twins (45.9% vs. 25.8%). Controls had an average of 0.5 (±0.4) pairs, and over 95% of the controls had no twins in their relatives. These results suggest genetic influences on DZ twinning in Nigerians. MoDZT were significantly younger in their mean age at first child, and had higher parity than controls, suggesting increased fertility in MoDZT. As compared to mothers with a single set of twins, mothers (N = 130) with multiple sets had significantly more twins among their relatives (5.4 pairs vs. 3.7 pairs) and had their first twins at a younger age (28.4 vs. 30.7 years), indicating that mothers with multiple sets of twins might have higher genetic propensity for twinning associated with earlier age at twin pregnancy. Our findings argue for genomewide association studies for DZ twinning in Nigerians, and may help to develop intervention strategies to overcome infertility/subfertility problems.
In: Twin research and human genetics: the official journal of the International Society for Twin Studies (ISTS) and the Human Genetics Society of Australasia, Band 22, Heft 4, S. 210-219
AbstractTwin registries often take part in large collaborative projects and are major contributors to genome-wide association (GWA) meta-analysis studies. In this article, we describe genotyping of twin-family populations from Australia, the Midwestern USA (Avera Twin Register), the Netherlands (Netherlands Twin Register), as well as a sample of mothers of twins from Nigeria to assess the extent, if any, of genetic differences between them. Genotyping in all cohorts was done using a custom-designed Illumina Global Screening Array (GSA), optimized to improve imputation quality for population-specific GWA studies. We investigated the degree of genetic similarity between the populations using several measures of population variation with genotype data generated from the GSA. Visualization of principal component analysis (PCA) revealed that the Australian, Dutch and Midwestern American populations exhibit negligible interpopulation stratification when compared to each other, to a reference European population and to globally distant populations. Estimations of fixation indices (FSTvalues) between the Australian, Midwestern American and Netherlands populations suggest minimal genetic differentiation compared to the estimates between each population and a genetically distinct cohort (i.e., samples from Nigeria genotyped on GSA). Thus, results from this study demonstrate that genotype data from the Australian, Dutch and Midwestern American twin-family populations can be reasonably combined for joint-genetic analysis.
In: Twin research and human genetics: the official journal of the International Society for Twin Studies (ISTS) and the Human Genetics Society of Australasia, Band 20, Heft 4, S. 267-270
In 2009, the first genome-wide association study (GWAS) for major depressive disorder (MDD) highlighted an association with PCLO locus on chromosome 7, although not reaching genome-wide significance level. In the present study, we revisited the original GWAS after increasing the overall sample size and the number of interrogated SNPs. In an analysis comparing 1,942 cases with lifetime diagnosis of MDD and 4,565 controls, PCLO showed a genome-wide significant association with MDD at SNP (rs2715157, p = 2.91 × 10−8) and gene-based (p = 1.48 × 10−7) level. Our results confirm the potential role of the PCLO gene in MDD, which is worth further replication and functional studies.
In: Twin research and human genetics: the official journal of the International Society for Twin Studies (ISTS) and the Human Genetics Society of Australasia, Band 18, Heft 1, S. 1-12
Monozygotic (MZ) twins are genetically identical at conception, making them informative subjects for studies on somatic mutations. Copy number variants (CNVs) are responsible for a substantial part of genetic variation, have relatively high mutation rates, and are likely to be involved in phenotypic variation. We conducted a genome-wide survey for post-twinning de novo CNVs in 1,097 MZ twin pairs. Comparisons between MZ twins were made by CNVs measured in DNA from blood or buccal epithelium with the Affymetrix 6.0 microarray and two calling algorithms. In addition, CNV concordance rates were compared between the different sources of DNA, and gene-enrichment association analyses were conducted for thought problems (TP) and attention problems (AP) using CNVs concordant within MZ pairs. We found a total of 153 putative post-twinning de novo CNVs >100 kb, of which the majority resided in 15q11.2. Based on the discordance of raw intensity signals a selection was made of 20 de novo CNVs for a qPCR validation experiments. Two out of 20 post-twinning de novo CNVs were validated with qPCR in the same twin pair. The 13-year-old MZ twin pair that showed two discordances in CN in 15q11.2 in their buccal DNA did not show large phenotypic differences. From the remaining 18 putative de novo CNVs, 17 were deletions or duplications that were concordant within MZ twin pairs. Concordance rates within twin pairs of CNV calls with CN ≠ 2 were ~80%. Buccal epithelium-derived DNA showed a slightly but significantly higher concordance rate, and blood-derived DNA showed significantly more concordant CNVs per twin pair. The gene-enrichment analyses on concordant CNVs showed no significant associations between CNVs overlapping with genes involved in neuronal processes and TP or AP after accounting for the source of DNA.
In: Twin research and human genetics: the official journal of the International Society for Twin Studies (ISTS) and the Human Genetics Society of Australasia, Band 26, Heft 6, S. 327-338
AbstractFemale fertility is a complex trait with age-specific changes in spontaneous dizygotic (DZ) twinning and fertility. To elucidate factors regulating female fertility and infertility, we conducted a genome-wide association study (GWAS) on mothers of spontaneous DZ twins (MoDZT) versus controls (3273 cases, 24,009 controls). This is a follow-up study to the Australia/New Zealand (ANZ) component of that previously reported (Mbarek et al., 2016), with a sample size almost twice that of the entire discovery sample meta-analysed in the previous article (and five times the ANZ contribution to that), resulting from newly available additional genotyping and representing a significant increase in power. We compare analyses with and without male controls and show unequivocally that it is better to include male controls who have been screened for recent family history, than to use only female controls. Results from the SNP based GWAS identified four genomewide significant signals, including one novel region, ZFPM1 (Zinc Finger Protein, FOG Family Member 1), on chromosome 16. Previous signals near FSHB (Follicle Stimulating Hormone beta subunit) and SMAD3 (SMAD Family Member 3) were also replicated (Mbarek et al., 2016). We also ran the GWAS with a dominance model that identified a further locus ADRB2 on chr 5. These results have been contributed to the International Twinning Genetics Consortium for inclusion in the next GWAS meta-analysis (Mbarek et al., in press).
In: Twin research and human genetics: the official journal of the International Society for Twin Studies (ISTS) and the Human Genetics Society of Australasia, Band 22, Heft 6, S. 637-640
AbstractHere we provide an update of the 2013 report on the Nigerian Twin and Sibling Registry (NTSR). The major aim of the NTSR is to understand genetic and environmental influences and their interplay in psychological and mental health development in Nigerian children and adolescents. Africans have the highest twin birth rates among all human populations, and Nigeria is the most populous country in Africa. Due to its combination of large population and high twin birth rates, Nigeria has one of the largest twin populations in the world. In this article, we provide current updates on the NTSR samples recruited, recruitment procedures, zygosity assessment and findings emerging from the NTSR.
In: Twin research and human genetics: the official journal of the International Society for Twin Studies (ISTS) and the Human Genetics Society of Australasia, Band 16, Heft 1, S. 271-281
Over the past 25 years, the Adult Netherlands Twin Register (ANTR) has collected a wealth of information on physical and mental health, lifestyle, and personality in adolescents and adults. This article provides an overview of the sources of information available, the main research findings, and an outlook for the future. Between 1991 and 2012, longitudinal surveys were completed by twins, their parents, siblings, spouses, and offspring. Data are available for 33,957 participants, with most individuals having completed two or more surveys. Smaller projects provided in-depth phenotyping, including measurements of the autonomic nervous system, neurocognitive function, and brain imaging. For 46% of the ANTR participants, DNA samples are available and whole genome scans have been obtained in more than 11,000 individuals. These data have resulted in numerous studies on heritability, gene x environment interactions, and causality, as well as gene finding studies. In the future, these studies will continue with collection of additional phenotypes, such as metabolomic and telomere length data, and detailed genetic information provided by DNA and RNA sequencing. Record linkage to national registers will allow the study of morbidity and mortality, thus providing insight into the development of health, lifestyle, and behavior across the lifespan.
Acknowledgments and Disclosures: This work was supported by the Wellcome Trust through a Strategic Award (104036/Z/14/Z). The Chief Scientist Office of the Scottish Government and the Scottish Funding Council provided core support for Generation Scotland. GS:SFHS was funded by a grant from the Scottish Government Health Department, Chief Scientist Office (CZD/16/6). We are grateful to the families who took part in GS:SFHS, the general practitioners and Scottish School of Primary Care for their help in recruiting them, and the whole Generation Scotland team, which includes academic researchers, clinic staff members, laboratory technicians, clerical workers, information technology staff members, statisticians, and research managers. AMM has previously received grant support from Pfizer, Lilly, and Janssen. These studies are not connected to the current investigation. YZ acknowledges support from the China Scholarship Council. T-KC and AMM acknowledge with gratitude the financial support received for this work from the Dr Mortimer and Theresa Sackler Foundation. PAT, DJP, IJD, and AMM are members of the University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross-council Lifelong Health and Wellbeing Initiative (MR/K026992/1). Funding from the Biotechnology and Biological Sciences Research Council and Medical Research Council (MRC) is gratefully acknowledged. DJM is an NHS Research Scotland (NRS) Fellow, funded by the Chief Scientist Office. PN and CSH acknowledge support from the MRC. All other authors report no biomedical financial interests or potential conflicts of interest. GS:SFHS data are available to researchers on application to the Generation Scotland Access Committee (access: http://generationscotland.org). The managed access process ensures that approval is granted only to research that comes under the terms of participant consent. ; Peer reviewed ; Publisher PDF
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. Acknowledgements: We especially thank all volunteers who participated in our study. This study made use of data generated by the 'Genome of the Netherlands' project, which is funded by the Netherlands Organization for Scientific Research (grant no. 184021007). The data were made available as a Rainbow Project of BBMRI-NL. Samples were contributed by LifeLines (http://lifelines.nl/lifelines-research/general), the Leiden Longevity Study (http://www.healthy-ageing.nl; http://www.langleven.net), the Netherlands Twin Registry (NTR: http://www.tweelingenregister.org), the Rotterdam studies (http://www.erasmus-epidemiology.nl/rotterdamstudy) and the Genetic Research in Isolated Populations programme (http://www.epib.nl/research/geneticepi/research.html#gip). The sequencing was carried out in collaboration with the Beijing Institute for Genomics (BGI). Cardiovascular Health Study: This CHS research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, HHSN268200960009C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants HL080295, HL087652, HL105756 and HL103612 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG023629 from the National Institute on Aging (NIA). A full list of CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. The CROATIA cohorts would like to acknowledge the invaluable contributions of the recruitment teams in Vis, Korcula and Split (including those from the Institute of Anthropological Research in Zagreb and the Croatian Centre for Global Health at the University of Split), the administrative teams in Croatia and Edinburgh and the people of Vis, Korcula and Split. SNP genotyping was performed at the Wellcome Trust Clinical Research Facility in Edinburgh for CROATIA-Vis, by Helmholtz Zentrum München, GmbH, Neuherberg, Germany for CROATIA-Korcula and by AROS Applied Biotechnology, Aarhus, Denmark for CROATIA-Split. They would also like to thank Jared O'Connell for performing the pre-phasing for all cohorts before imputation. The ERF study as a part of EuroSPAN (European Special Populations Research Network) was supported by European Commission FP-6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received funding from the European Community's Seventh Framework Programme (FP7/2007-2013)/grant agreement HEALTH-F4-2007-201413 by the European Commission under the programme 'Quality of Life and Management of the Living Resources' of 5th Framework Programme (no. QLG2-CT-2002-01254). High-throughput analysis of the ERF data was supported by joint grant from the Netherlands Organisation for Scientific Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043). This research was financially supported by BBMRI-NL, a Research Infrastructure financed by the Dutch government (NWO 184.021.007). Statistical analyses for the ERF study were carried out on the Genetic Cluster Computer (http://www.geneticcluster.org), which is financially supported by the Netherlands Scientific Organization (NWO 480-05-003 PI: Posthuma) along with a supplement from the Dutch Brain Foundation and the VU University Amsterdam. We are grateful to all study participants and their relatives, general practitioners and neurologists for their contributions and to P. Veraart for her help in genealogy, J. Vergeer for the supervision of the laboratory work and P. Snijders for his help in data collection. The FamHS is funded by a NHLBI grant 5R01HL08770003, and NIDDK grants 5R01DK06833603 and 5R01DK07568102. The Framingham Heart Study SHARe Project for GWAS scan was supported by the NHLBI Framingham Heart Study (Contract No. N01-HC-25195) and its contract with Affymetrix Inc for genotyping services (Contract No. N02-HL-6-4278). DNA isolation and biochemistry were partly supported by NHLBI HL-54776. A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at the Boston University School of Medicine and Boston Medical Center. We are grateful to Han Chen for conducting the 1000G imputation. The Family Heart Study was supported by the by grants R01-HL-087700 and R01-HL-088215 from the National Heart, Lung, and Blood Institute (NHLBI). We would like to acknowledge the invaluable contributions of the families who took part in the Generation Scotland: Scottish Family Health Study, the general practitioners and Scottish School of Primary Care for their help in recruiting them, and the whole Generation Scotland team, which includes academic researchers, IT staff, laboratory technicians, statisticians and research managers. SNP genotyping was performed at the Wellcome Trust Clinical Research Facility in Edinburgh. GS:SFHS is funded by the Scottish Executive Health Department, Chief Scientist Office, grant number CZD/16/6. SNP genotyping was funded by the Medical Research Council, United Kingdom. We wish to acknowledge the services of the LifeLines Cohort Study, the contributing research centres delivering data to LifeLines and all the study participants. MESA Whites and the MESA SHARe project are conducted and supported by contracts N01-HC-95159 through N01-HC-95169 and RR-024156 from the NHLBI. Funding for MESA SHARe genotyping was provided by NHLBI Contract N02.HL.6.4278. MESA Family is conducted and supported in collaboration with MESA investigators; support is provided by grants and contracts R01HL071051, R01HL071205, R01HL071250, R01HL071251, R01HL071252, R01HL071258 and R01HL071259. We thank the participants of the MESA study, the Coordinating Center, MESA investigators and study staff for their valuable contributions. A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org. Netherland Twin Register (NTR) and Netherlands Study of Depression and Anxiety (NESDA): Funding was obtained from the Netherlands Organization for Scientific Research (NWO) and MagW/ZonMW grants Middelgroot-911-09-032, Spinozapremie 56-464-14192, Geestkracht programme of the Netherlands Organization for Health Research and Development (Zon-MW, grant number 10-000-1002), Center for Medical Systems Biology (CSMB, NWO Genomics), NBIC/BioAssist/RK(2008.024), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL, 184.021.007), VU University's Institute for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam (NCA); the European Science Foundation (ESF, EU/QLRT-2001-01254), the European Community's Seventh Framework Program (FP7/2007-2013), ENGAGE (HEALTH-F4-2007-201413); the European Science Council (ERC Advanced, 230374); and the European Research Council (ERC-284167). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health, Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1, MH081802, Grand Opportunity grants 1RC2 MH089951 and 1RC2 MH089995). PREVEND genetics is supported by the Dutch Kidney Foundation (Grant E033), the EU project grant GENECURE (FP-6 LSHM CT 2006 037697), the National Institutes of Health (grant 2R01LM010098), The Netherlands Organisation for Health Research and Development (NWO-Groot grant 175.010.2007.006, NWO VENI grant 916.761.70, ZonMw grant 90.700.441) and the Dutch Inter University Cardiology Institute Netherlands (ICIN). The PROSPER study was supported by an investigator-initiated grant obtained from Bristol-Myers Squibb. J.W.J is an Established Clinical Investigator of the Netherlands Heart Foundation (grant 2001 D 032). Genotyping was supported by the seventh framework programme of the European commission (grant 223004) and by the Netherlands Genomics Initiative (Netherlands Consortium for Healthy Aging grant 050-060-810). The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII) and the Municipality of Rotterdam. We are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project no. 050-060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters for their help in creating the GWAS database. ; Peer reviewed ; Publisher PDF