Improving Flood Prediction Assimilating Uncertain Crowdsourced Data into Hydrologic and Hydraulic Models
In: IHE Delft PhD Thesis Ser.
Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Acknoledgments -- Summary -- Samenvatting -- Sommario -- Table of Contents -- 1: Introduction -- 1.1 Background -- 1.1.1 Flood forecasting and early warning systems -- 1.1.2 Hydrological and hydrodynamic modelling -- 1.1.3 Uncertainty in hydrological and hydrodynamic modelling -- 1.1.4 Data assimilation -- 1.1.5 Citizen Science -- 1.2 Motivation -- 1.3 Terminology -- 1.4 Research objectives -- 1.5 Outline of the thesis -- 2: Case studies and models -- 2.1 Introduction -- 2.2 Case 1 - Brue Catchment (UK) -- 2.2.1 Catchment description -- 2.2.2 Model description -- 2.3 Case 2 - Bacchiglione Catchment (Italy) -- 2.3.1 Catchment description -- 2.3.2 Model description -- 2.4 Case 3 - Trinity and Sabine Rivers (USA) -- 2.4.1 Rivers description -- 2.4.2 Model description -- 2.5 Case 4 - Synthetic river reach -- 3: Data assimilation methods -- 3.1 Introduction -- 3.2 Direct insertion -- 3.3 Nudging scheme -- 3.4 Kalman Filter -- 3.5 Ensemble Kalman Filter -- 3.6 Asynchronous Ensemble Kalman Filter -- 4: Assimilation of synchronous data in hydrological models -- 4.1 Introduction -- 4.2 Methodology -- 4.2.1 Assimilation of intermittent observations -- 4.2.2 Observation and model error -- 4.2.3 Generation of synthetic observations -- 4.3 Experimental setup -- 4.3.1 Experiment 4.1: Streamflow data from static physical (StPh) sensors -- 4.3.2 Experiment 4.2: Streamflow data from static social (StSc) sensors -- 4.3.3 Experiment 4.3: Intermittent streamflow data from static social (StSc) sensors -- 4.3.4 Experiment 4.4: Heterogeneous network of static physical (StPh) and static social (StSc) sensors -- 4.4 Results and discussion -- 4.4.1 Experiment 4.1 -- 4.4.2 Experiment 4.2 -- 4.4.3 Experiment 4.3 -- 4.4.4 Experiment 4.4 -- 4.5 Conclusions