Suchergebnisse
Filter
3 Ergebnisse
Sortierung:
Engaging with Users of Climate Information and the Coproduction of Knowledge
In: Weather, climate & society, Band 9, Heft 4, S. 839-849
ISSN: 1948-8335
Abstract
Within the realm of climate and environmental sciences, stakeholder engagement has traditionally been given a relative low priority in favor of generating tools, products, and services following the longstanding practice of pushing out information in the hopes users will pull it into their decision toolkits. However, the landscape is gradually shifting away from that paradigm and toward one in which the stakeholder community is more directly involved in the production of products and services with the scientific organization. This mutual learning arrangement, referred to as the coproduction of knowledge, has been applied to two user engagement activities within the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) and the NOAA Office of Coastal Management (OCM) Coral Reef Conservation Program (CRCP). The iterative nature of such dialogues helped scientists within NCEI and OCM to better understand user requirements and as a result generate climate information that was locally relevant and regionally applicable. The recent engagement activities exemplified the benefits of a robust and sustained relationship between climate scientists and the user community. They demonstrate that the interactions between the two led to the empowerment of the local community to shape and mold climate information products as well as further enhancing user buy in of these products and services with which local agriculture and food security, disaster risk reduction, energy, health, and water decisions are being made. This coproduction of knowledge model for user engagement activities also serves to build trust between the scientific and user communities.
Tropical Cyclone Projections: Changing Climate Threats for Pacific Island Defense Installations
In: Weather, climate & society, Band 11, Heft 1, S. 3-15
ISSN: 1948-8335
Abstract
Potential changing climate threats in the tropical and subtropical North Pacific Ocean were assessed, using coupled ocean–atmosphere and atmosphere-only general circulation models, to explore their response to projected increasing greenhouse gas emissions. Tropical cyclone occurrence, described by frequency and intensity, near islands housing major U.S. defense installations was the primary focus. Four island regions—Guam and Kwajalein Atoll in the tropical northwestern Pacific, Okinawa in the subtropical northwestern Pacific, and Oahu in the tropical north-central Pacific—were considered, as they provide unique climate and geographical characteristics that either enhance or reduce the tropical cyclone risk. Guam experiences the most frequent and severe tropical cyclones, which often originate as weak systems close to the equator near Kwajalein and sometimes track far enough north to affect Okinawa, whereas intense storms are the least frequent around Oahu. From assessments of models that simulate well the tropical Pacific climate, it was determined that, with a projected warming climate, the number of tropical cyclones is likely to decrease for Guam and Kwajalein but remain about the same near Okinawa and Oahu; however, the maximum intensity of the strongest storms may increase in most regions. The likelihood of fewer but stronger storms will necessitate new localized assessments of the risk and vulnerabilities to tropical cyclones in the North Pacific.