Pandemics deeply affect the health and economy of the world population. A precise determination of affected communities is of great importance to establish containment measures and reduce the economic impact. Here, we propose the development of Units for Vigilance of Emerging Diseases based on the screening of pathogens released to wastewater treatment plants to follow the spread of the infectious agent to determine the location of infected people. ; Spanish Ministry for Economy and Competitiveness ; European Union (EU) P18-RT-976 CV20-01559 ; Andalusian Regional Government
This research was funded by the Spanish Ministry for Economy and Competitiveness and the European Union, within the context of the research project CGL2017-91737-EXP and by the Andalusian Regional Government and the European Union under the aegis of research project P18-RT-976. ; Plant growth-promoting rhizobacteria (PGPR) are beneficial soil microorganisms that can stimulate plant growth and increase tolerance to biotic and abiotic stresses. Some PGPR are capable of secreting exopolysaccharides (EPS) to protect themselves and, consequently, their plant hosts against environmental fluctuations and other abiotic stresses such as drought, salinity, or heavy metal pollution. This review focuses on the enhancement of plant abiotic stress tolerance by bacterial EPS. We provide a comprehensive summary of the mechanisms through EPS to alleviate plant abiotic stress tolerance, including salinity, drought, temperature, and heavy metal toxicity. Finally, we discuss how these abiotic stresses may affect bacterial EPS production and its role during plant-microbe interactions. ; Spanish Ministry for Economy and Competitiveness ; European Commission P18-RT-976 CGL2017-91737-EXP ; Andalusian Regional Government
This research study was funded by the Spanish Ministry for Economy and Competitiveness and the European Union, within the context of the research project CGL2017-91737-EXP and by the Andalusian Regional Government and the European Union (research project P18-RT-976) and by the European Union through the Erasmus+ program and partially supported by Chiang Mai University. PR is grateful to the Graduate School, Chiang Mai University, for the TA/RA scholarship for 2019-2021. ; Salt stress is a serious agricultural problem threatens plant growth and development resulted in productivity loss and global food security concerns. Salt tolerant plant growth promoting actinobacteria, especially deep-sea actinobacteria are an alternative strategy to mitigate deleterious effects of salt stress. In this study, we aimed to investigate the potential of deep-sea Dermacoccus abyssi MT1.1T to mitigate salt stress in tomato seedlings and identified genes related to plant growth promotion and salt stress mitigation. D. abyssi MT1.1T exhibited plant growth promoting traits namely indole-3-acetic acid (IAA) and siderophore production and phosphate solubilization under 0, 150, 300, and 450 mM NaCl in vitro. Inoculation of D. abyssi MT1.1T improved tomato seedlings growth in terms of shoot length and dry weight compared with non-inoculated seedlings under 150 mM NaCl. In addition, increased total soluble sugar and total chlorophyll content and decreased hydrogen peroxide content were observed in tomato inoculated with D. abyssi MT1.1T. These results suggested that this strain mitigated salt stress in tomatoes via osmoregulation by accumulation of soluble sugars and H2O2 scavenging activity. Genome analysis data supported plant growth promoting and salt stress mitigation potential of D. abyssi MT1.1T. Survival and colonization of D. abyssi MT1.1T were observed in roots of inoculated tomato seedlings. Biosafety testing on D. abyssi MT1.1T and in silico analysis of its whole genome sequence revealed no evidence of its pathogenicity. Our results demonstrate the potential of deep-sea D. abyssi MT1.1T to mitigate salt stress in tomato seedlings and as a candidate of eco-friendly bio-inoculants for sustainable agriculture. ; Spanish Government ; European Commission P18-RT-976 CGL2017-91737-EXP ; Andalusian Regional Government ; European Union through the Erasmus+ program ; Chiang Mai University ; Graduate School, Chiang Mai University
This research study was funded by the Spanish Ministry for Economy and Competitiveness and the European Union, within the context of the research project CGL2017-91737-EXP and by the Andalusian Regional Government and the European Union (research project P18-RT-976). ; Droughts and high temperatures deeply affect crop production. The use of desiccationtolerant (or xerotolerant) microorganisms able to protect plants from droughts represents a promising alternative. These xerotolerant microorganisms have previously been used to modulate plant responses and improve their tolerance to drought. In addition, these microorganisms could be stored and used in dry formats, which would improve their viability and resilience at a much lower cost than current market alternatives. In the present study we analyze the possibility of using strains of xerotolerant Actinobacteria in encapsulated format on seeds. Under this formulation, we carried out greenhouse with farming soil with maize plants. Under greenhouse conditions, the plants showed greater resistance to drought, as well as increased growth and production yield, but not as well in field trials. This alternative could represent a useful tool to improve water efficiency in crops for drought-affected areas or affected by water scarcity. ; Spanish Government ; European Commission P18-RT-976 ; Andalusian Regional Government
Desiccation-tolerant plants are able to survive for extended periods of time in the absence of water. The molecular understanding of the mechanisms used by these plants to resist droughts can be of great value for improving drought tolerance in crops. This understanding is especially relevant in an environment that tends to increase the number and intensity of droughts. The combination of certain microorganisms with drought-sensitive plants can improve their tolerance to water scarcity. One of these bacteria is Microbacterium sp. 3J1, an actinobacteria able to protect pepper plants from drought. In this study, we supplemented drought-tolerant and drought-sensitive plant rhizospheres with Microbacterium sp. 3J1 and analyzed their proteomes under drought to investigate the plant-microbe interaction. We also compare this root proteome with the proteome found in desiccation-tolerant plants. In addition, we studied the proteome of Microbacterium sp. 3J1 subjected to drought to analyze its contribution to the plantmicrobe interaction. We describe those mechanisms shared by desiccation-tolerant plants and sensitive plants protected by microorganisms focusing on protection against oxidative stress, and production of compatible solutes, plant hormones, and other more specific proteins. ; Spanish Ministry for Economy and Competitiveness ; European Union (EU) P11-RNM-7844 P18-RT-976 CTM2017-84332-R CGL2017-91737-EXP ; Andalusian Regional Government ; Spanish Ministry of Economy
UThis research study was funded by the Spanish Ministry for Economy and Competitiveness and the European Union, within the context of the research project CGL2017-91737-EXP and by the Andalusian Regional Government and the European Union (research project P18-RT-976) and by the European Union through the Erasmus+ program and partially supported by Chiang Mai University. PR is grateful to the Graduate School, Chiang Mai University, for the TA/RA scholarship for 2019-2021. ; Soil salinity is an enormous problem affecting global agricultural productivity. Deep-sea actinobacteria are interesting due to their salt tolerance mechanisms. In the present study, we aim to determine the ability of deep-sea Dermacoccus (D. barathri MT2.1T and D. profundi MT2.2T) to promote tomato seedlings under 150 mM NaCl compared with the terrestrial strain D. nishinomiyaensis DSM20448T. All strains exhibit in vitro plant growth-promoting traits of indole-3-acetic acid production, phosphate solubilization, and siderophore production. Tomato seedlings inoculated with D. barathri MT2.1T showed higher growth parameters (shoot and root length, dry weight, and chlorophyll content) than non-inoculated tomato and the terrestrial strain under 150 mM NaCl. In addition, hydrogen peroxide (H2O2) in leaves of tomatoes inoculated with deep-sea Dermacoccus was lower than the control seedlings. This observation suggested that deep-sea Dermacoccus mitigated salt stress by reducing oxidative stress caused by hydrogen peroxide. D. barathri MT2.1T showed no harmful effects on Caenorhabditis elegans, Daphnia magna, Eisenia foetida, and Escherichia coli MC4100 in biosafety tests. This evidence suggests that D. barathri MT2.1T would be safe for use in the environment. Our results highlight the potential of deep-sea Dermacoccus as a plant growth promoter for tomatoes under salinity stress. ; Spanish Ministry for Economy and Competitiveness ; European Commission CGL2017-91737-EXP P18-RT-976 ; Andalusian Regional Government ; Chiang Mai University ; Graduate School, Chiang Mai University ; European Commission
A collection of lipase-producing microorganisms was isolated from sludge derived from an urban wastewater treatment plant. The microorganisms with the highest levels of lipase activity were selected in order to use triglycerides present in the sludge effectively and were then transformed with pdc:adhB genes for the production of ethanol. The transgenic strains showed high growth rates in diluted sludge and produced lipase protein in order to utilize fat present in the sludge, which provides an abundant source of carbon. Using sludge derived from treated wastewater as nutrient source, ethanol was produced by certain transgenic species belonging to the genera Proteus. Different forms of sludge were tested for maximal ethanol production, with dehydrated sludge being found to produce the best performance. ; This research was funded by the Spanish Ministry of Science and Innovation (projects CTM2009-09270 and CTM2017-84332-R), the Andalusian regional government (project P08-RNM-04180) and ESAMUR and CADAGUA, S.A., involved in sanitation and wastewater treatment in the Murcia region (contract 4304-00).