Velocity field analysis of the high density, high pressure diesel spray
In this study, particle image velocimetry (PIV) measurements have been performed extensively on a non-reactive dense diesel spray injected from a single orifice injector, under various injection pressure and steady ambient conditions, in a constant flow chamber. Details of PIV setup for diesel spray measurement without additional seeding are explained first. The measured velocity profiles are compared to those obtained from other similar measurements performed in a different institution, as well as those obtained from a 1D spray model simulation, presenting in both cases a good level of agreement. In addition, the velocity fields under various injection pressures and ambient densities show the dominant effects of these parameters on the behavior of diesel spray. The self-similarity of the transverse cut profiles of axial velocity is evaluated, showing that the measurements are in agreement with the hypothesis of self-similar velocity profiles. Finally, the effect of injection pressure and ambient density on the velocity fluctuations is presented and analyzed as well. While the experimental results presented here could help to understand the complex diesel fuel-air mixing process during injection, they also provide additional spray velocity data for future computational model validation, following the main idea of the Engine Combustion Network. ; This work was sponsored by "Ministerio de Economia y Competitividad" of the Spanish Government in the frame of the Project "Comprension de la influencia de combustibles no convencionales en el proceso de injeccion y combustion tipo diesel", Reference TRA2012-36932. Additionally, the optical equipment used for the project was purchased with funding from Ministerio de Economia y Competitividad FEDER-ICTS-2012-06. ; Payri Marín, R.; Viera-Sotillo, JP.; Wang, H.; Malbec, L. (2016). Velocity field analysis of the high density, high pressure diesel spray. International Journal of Multiphase Flow. 80:69-78. https://doi.org/10.1016/j.ijmultiphaseflow.2015.10.012 ; S ; 69 ; 78 ...