Organic and elemental carbon associated to PM10 and PM2.5 at urban sites of northern Greece
In: Environmental science and pollution research: ESPR, Band 21, Heft 3, S. 1769-1785
ISSN: 1614-7499
7 Ergebnisse
Sortierung:
In: Environmental science and pollution research: ESPR, Band 21, Heft 3, S. 1769-1785
ISSN: 1614-7499
In: Air quality, atmosphere and health: an international journal, Band 3, Heft 4, S. 225-234
ISSN: 1873-9326
Derivatives of polycyclic aromatic hydrocarbons (PAHs) such as nitrated- and oxygenated-PAHs (NPAHs and OPAHs) could be even more toxic and harmful for the environment and humans than PAHs. We assessed the spatial and seasonal variations of NPAHs and OPAHs atmospheric levels, their cancer risks and their gas-to-particle partitioning. To this end, about 250 samples of fine particulate matter (PM2.5) and 50 gaseous samples were collected in 2017 in central Europe in the cities of Brno and Ljubljana (two traffic and two urban background sites) as well as one rural site. The average particulate concentrations were ranging from below limit of quantification to 593 pg m-3 for Σ9NPAHs and from 1.64 to 4330 pg m-3 for Σ11OPAHs, with significantly higher concentrations in winter compared to summer. In winter, the particulate levels of NPAHs and OPAHs were higher at the traffic site compared to the urban background site in Brno while the opposite was found in Ljubljana. NPAHs and OPAHs particulate levels were influenced by the meteorological parameters and co-varied with several air pollutants. The significance of secondary formation on the occurrence of some NPAHs and OPAHs is indicated. In winter, 27-47% of samples collected at all sites were above the acceptable lifetime carcinogenic risk. The gas-particle partitioning of NPAHs and OPAHs was influenced by their physico-chemical properties, the season and the site-specific aerosol composition. Three NPAHs and five OPAHs had higher particulate mass fractions at the traffic site, suggesting they could be primarily emitted as particles from vehicle traffic and subsequently partitioning to the gas phase along air transport. This study underlines the importance of inclusion of the gas phase in addition to the particulate phase when assessing the atmospheric fate of polycyclic aromatic compounds and also when assessing the related health risk. ; This project was supported by the European Union's H2020 Framework Programme (ICARUS project) under grant agreement No – 690105, by ...
BASE
Use of a multi-sensor approach can provide citizens with holistic insights into the air quality of their immediate surroundings and their personal exposure to urban stressors. Our work, as part of the ICARUS H2020 project, which included over 600 participants from seven European cities, discusses the data fusion and harmonization of a diverse set of multi-sensor data streams to provide a comprehensive and understandable report for participants. Harmonizing the data streams identified issues with the sensor devices and protocols, such as non-uniform timestamps, data gaps, difficult data retrieval from commercial devices, and coarse activity data logging. Our process of data fusion and harmonization allowed us to automate visualizations and reports, and consequently provide each participant with a detailed individualized report. Results showed that a key solution was to streamline the code and speed up the process, which necessitated certain compromises in visualizing the data. A thought-out process of data fusion and harmonization of a diverse set of multi-sensor data streams considerably improved the quality and quantity of distilled data that a research participant received. Though automation considerably accelerated the production of the reports, manual and structured double checks are strongly recommended. ; This work has received funding from the European Union's Horizon 2020 Programme for Research, Technological Development, and Demonstration, under grant agreement No. 690105 (Integrated Climate forcing and Air Pollution Reduction in Urban Systems (ICARUS)). This work reflects only the authors' views, and the European Commission is not responsible for any use that may be made of the information it contains. Funding was received from the Young Researchers Program and the P1-0143 program "Cycling of substances in the environment, mass balances, modelling of environmental processes and risk assessment", both funded by the Slovenian Research Agency. The authors thank RECETOX Research Infrastructure (No. ...
BASE
Using low-cost portable air quality (AQ) monitoring devices is a growing trend in personal exposure studies, enabling a higher spatio-temporal resolution and identifying acute exposure to high concentrations. Comprehension of the results by participants is not guaranteed in exposure studies. However, information on personal exposure is multiplex, which calls for participant involvement in information design to maximise communication output and comprehension. This study describes and proposes a model of a user-centred design (UCD) approach for preparing a final report for participants involved in a multi-sensor personal exposure monitoring study performed in seven cities within the EU Horizon 2020 ICARUS project. Using a combination of human-centred design (HCD), human-information interaction (HII) and design thinking approaches, we iteratively included participants in the framing and design of the final report. User needs were mapped using a survey (n = 82), and feedback on the draft report was obtained from a focus group (n = 5). User requirements were assessed and validated using a post-campaign survey (n = 31). The UCD research was conducted amongst participants in Ljubljana, Slovenia, and the results report was distributed among the participating cities across Europe. The feedback made it clear that the final report was well-received and helped participants better understand the influence of individual behaviours on personal exposure to air pollution. ; This work has received funding from the European Union's Horizon 2020 Programme for research technological development and demonstration under grant agreement No 690105 (Integrated Climate forcing and Air Pollution Reduction in Urban Systems (ICARUS)). This work reflects only the authors' views, and the European Commission is not responsible for any use that may be made of the information it contains. Funding was received from the Young Researchers Program and P1-0143 program "Cycling of substances in the environment, mass balances, modelling of environmental ...
BASE
Abstract Background The European Union's 7th Framework Programme (EU's FP7) project HEALS – Health and Environment-wide Associations based on Large Population Surveys – aims a refinement of the methodology to elucidate the human exposome. Human biomonitoring (HBM) provides a valuable tool for understanding the magnitude of human exposure from all pathways and sources. However, availability of specific biomarkers of exposure (BoE) is limited. Objectives The objective was to summarize the availability of BoEs for a broad range of environmental stressors and exposure determinants and corresponding reference and exposure limit values and biomonitoring equivalents useful for unraveling the exposome using the framework of environment-wide association studies (EWAS). Methods In a face-to-face group discussion, scope, content, and structure of the HEALS deliverable "Guidelines for appropriate BoE selection for EWAS studies" were determined. An expert-driven, distributed, narrative review process involving around 30 individuals of the HEALS consortium made it possible to include extensive information targeted towards the specific characteristics of various environmental stressors and exposure determinants. From the resulting 265 page report, targeted information about BoE, corresponding reference values (e.g., 95th percentile or measures of central tendency), exposure limit values (e.g., the German HBM I and II values) and biomonitoring equivalents (BEs) were summarized and updated. Results 64 individual biological, chemical, physical, psychological and social environmental stressors or exposure determinants were included to fulfil the requirements of EWAS. The list of available BoEs is extensive with a number of 135 ; however, 12 of the stressors and exposure determinants considered do not leave any measurable specific substance in accessible body specimens. Opportunities to estimate the internal exposure stressors not (yet) detectable in human specimens were discussed. Conclusions Data about internal exposures are ...
BASE
In: Steckling , N , Gotti , A , Bose-O'Reilly , S , Chapizanis , D , Costopoulou , D , De Vocht , F , Garí , M , Grimalt , J O , Heath , E , Hiscock , R , Jagodic , M , Karakitsios , S P , Kedikoglou , K , Kosjek , T , Leondiadis , L , Maggos , T , Mazej , D , Polańska , K , Povey , A , Rovira , J , Schoierer , J , Schuhmacher , M , Špirić , Z , Stajnko , A , Stierum , R , Tratnik , J S , Vassiliadou , I , Annesi-Maesano , I , Horvat , M & Sarigiannis , D A 2018 , ' Biomarkers of exposure in environment-wide association studies - Opportunities to decode the exposome using human biomonitoring data ' , Environmental Research , vol. 164 , pp. 597-624 . https://doi.org/10.1016/j.envres.2018.02.041
BACKGROUND: The European Union's 7th Framework Programme (EU's FP7) project HEALS - Health and Environment-wide Associations based on Large Population Surveys - aims a refinement of the methodology to elucidate the human exposome. Human biomonitoring (HBM) provides a valuable tool for understanding the magnitude of human exposure from all pathways and sources. However, availability of specific biomarkers of exposure (BoE) is limited. OBJECTIVES: The objective was to summarize the availability of BoEs for a broad range of environmental stressors and exposure determinants and corresponding reference and exposure limit values and biomonitoring equivalents useful for unraveling the exposome using the framework of environment-wide association studies (EWAS). METHODS: In a face-to-face group discussion, scope, content, and structure of the HEALS deliverable "Guidelines for appropriate BoE selection for EWAS studies" were determined. An expert-driven, distributed, narrative review process involving around 30 individuals of the HEALS consortium made it possible to include extensive information targeted towards the specific characteristics of various environmental stressors and exposure determinants. From the resulting 265 page report, targeted information about BoE, corresponding reference values (e.g., 95th percentile or measures of central tendency), exposure limit values (e.g., the German HBM I and II values) and biomonitoring equivalents (BEs) were summarized and updated. RESULTS: 64 individual biological, chemical, physical, psychological and social environmental stressors or exposure determinants were included to fulfil the requirements of EWAS. The list of available BoEs is extensive with a number of 135; however, 12 of the stressors and exposure determinants considered do not leave any measurable specific substance in accessible body specimens. Opportunities to estimate the internal exposure stressors not (yet) detectable in human specimens were discussed. CONCLUSIONS: Data about internal exposures are useful to ...
BASE