Dynamic land cover information: bridging the gap between remote sensing and natural resource management
In: Ecology and society: E&S ; a journal of integrative science for resilience and sustainability, Band 18, Heft 1
ISSN: 1708-3087
4 Ergebnisse
Sortierung:
In: Ecology and society: E&S ; a journal of integrative science for resilience and sustainability, Band 18, Heft 1
ISSN: 1708-3087
Following extreme flooding in eastern Australia in 2011, the Australian Government established a programme to improve access to flood information across Australia. As part of this, a project was undertaken to map the extent of surface water across Australia using the multi-decadal archive of Landsat satellite imagery. A water detection algorithm was used based on a decision tree classifier, and a comparison methodology using a logistic regression. This approach provided an understanding of the confidence in the water observations. The results were used to map the presence of surface water across the entire continent from every observation of 27 years of satellite imagery. The Water Observation from Space (WOfS) product provides insight into the behaviour of surface water across Australia through time, demonstrating where water is persistent, such as in reservoirs, and where it is ephemeral, such as on floodplains during a flood. In addition the WOfS product is useful for studies of wetland extent, aquatic species behaviour, hydrological models, land surface process modelling and groundwater recharge. This paper describes the WOfS methodology and shows how similar time-series analyses of nationally significant environmental variables might be conducted at the continental scale.
BASE
Following extreme flooding in eastern Australia in 2011, the Australian Government established a programme to improve access to flood information across Australia. As part of this, a project was undertaken to map the extent of surface water across Australia using the multi-decadal archive of Landsat satellite imagery. A water detection algorithm was used based on a decision tree classifier, and a comparison methodology using a logistic regression. This approach provided an understanding of the confidence in the water observations. The results were used to map the presence of surface water across the entire continent from every observation of 27 years of satellite imagery. The Water Observation from Space (WOfS) product provides insight into the behaviour of surface water across Australia through time, demonstrating where water is persistent, such as in reservoirs, and where it is ephemeral, such as on floodplains during a flood. In addition the WOfS product is useful for studies of wetland extent, aquatic species behaviour, hydrological models, land surface process modelling and groundwater recharge. This paper describes the WOfS methodology and shows how similar time-series analyses of nationally significant environmental variables might be conducted at the continental scale.
BASE
Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat-1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and follow-up with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loopjustifying and encouraging current and future programmatic support for Landsat. © 2019 ; The United States Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) are gratefully acknowledged for support and encouragement of the 20122017 Landsat Science Team ( https://landsat.usgs.gov/landsat-science-teams ). The Editor and Reviewers are thanked for the valuable insights and constructive suggestions made to improve this manuscript.
BASE