Suchergebnisse
Filter
12 Ergebnisse
Sortierung:
SSRN
SSRN
Social Screens and Systematic Boycott Risk
SSRN
Monetary Shocks, Equity Returns and Volatility - A Firm-Level Panel Data Analysis
In: Applied Economics, Forthcoming
SSRN
Application of response surface methodology to optimise the extraction of tea saponin from Camellia oleifera, and their verification by HPLC
In: International food research journal: IFRJ, Band 29, Heft 6, S. 1339-1347
ISSN: 2231-7546
Single factor combined with response surface methodology was used to optimise the process parameters of tea saponin extraction from Camellia oleifera. Four factors including material-liquid ratio, extraction temperature, extraction time, and ethanol concentration were selected as the influencing factors on the basis of single factor. The extraction rate of tea saponin was used as the response factor to analyse the response of these four factors and three levels. Results showed that extraction temperature of 81.69°C, material-liquid ratio of 1:11.85 g/mL, time of 6.17 h, and ethanol concentration of 56.69% were the best extraction conditions. The estimated yield of extraction was 7.46%. Analysis of the tea saponin samples by using high performance liquid chromatography showed that the main peak time was 6.668 min, and the absorption peaks and peaks were symmetric.
Study on In-store drying technology of paddy in China
In China, with accelerating growth of agriculture economy structure and rapid development of farming mechanization, the intensity and scale of grain planting has increased considerably. However, the drying of freshly harvested grain is a big problem needing to be resolved. In-store drying technology has good ability for large scale drying. Low energy consumption and successful application of this technology in Australia and America has attracted much attention by the Chinese government. Therefore, study of instore drying started in China from the cooperative study of 'In-store drying of paddy in China' with Australia in 1997. This paper will introduce the main projects of in-store drying in China since 1997, different periods of the technology development, key problems solved, major achievements and the drying technology distribution within China. After about 13 years development, in-store drying of paddy in China includes technology and related equipment specifically for China, such as technology and equipment for mobile ventilation, mold prevention with ozone, heaters for drying grain moisture, and computerized cooling systems. The initial moisture content of paddy allowed for in-store drying increased from 16% to 25%, the bulk allowable depth of paddy increased from 1.8 m to 6 m, and was competitive with paddy drying throughout the world. The main tasks to advance in-store drying in China in the future will be integration of two stage drying technology for paddy and development of relevant equipment, wireless control ventilation technology and development of relevant equipment, study and application of in-store drying technology in new varieties such as wheat and rapeseed. Keywords: China, In-store drying, Paddy, Moisture content
BASE
Ferroelectric, dielectric and pyroelectric properties of Sr and Sn codoped BCZT lead free ceramics
In: Advances in applied ceramics: structural, functional and bioceramics, Band 114, Heft 8, S. 436-441
ISSN: 1743-6761
New improvement of the combined optical fiber transducer for landslide monitoring
In: Natural hazards and earth system sciences: NHESS, Band 14, Heft 8, S. 2079-2088
ISSN: 1684-9981
Abstract. Landslide monitoring is important in predicting the behavior of landslides, thereby ensuring environmental, life, and property safety. On the basis of our previous studies, we conducted the double shear test by using a third-generation optical fiber transducer that uses expandable polystyrene (EPS) as base material. However, the third-generation transducer has poor performance when cohesive force is present between the grout and capillary stainless steel pipe of the transducer. Thus, the fourth-generation optical fiber transducer was invented. Similar to the third-generation transducer, the fourth-generation transducer also used EPS as its base material. Single shear test was conducted on the fourth-generation transducer after being grouted with cement mortar (1 : 1 mix ratio). The micro-bend loss mechanism of the optical fiber was considered, and the optical time domain reflectometry instrument was used. The fact that the loss sequence of optical fibers subjected to loading is different at various locations is found. The relationship of the loading-point displacement vs. optical fiber sliding distance and optical loss were measured. Results show that the maximum initial measurement precision of the newly proposed device is 1 mm, the corresponding sliding distance is 21 mm, and the dynamic range is 0–20 mm. The fourth-generation transducer can measure the movement direction of loadings, thus making this transducer applicable for landslide monitoring.
NIGERIA - Lucky friends - From school mates to defence chiefs, the men and women trusted by Vice-President Goodluck Jonathan
In: Africa confidential, Band 51, Heft 2, S. 2-3
ISSN: 0044-6483
Preparation and electrical properties of pseudoternary BaTiO3–CaTiO3–BaZrO3lead free piezoelectric ceramics
In: Advances in applied ceramics: structural, functional and bioceramics, Band 112, Heft 5, S. 257-262
ISSN: 1743-6761
Observation of the rare B-s(0)->mu(+)mu(-) decay from the combined analysis of CMS and LHCb data
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; FINEP (Brazil) ; NSFC (China) ; CNRS/IN2P3 (France) ; BMBF (Germany) ; DFG (Germany) ; HGF (Germany) ; SFI (Ireland) ; INFN (Italy) ; NASU (Ukraine) ; STFC (UK) ; NSF (USA) ; BMWFW (Austria) ; FWF (Austria) ; FNRS (Belgium) ; FWO (Belgium) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; MES (Bulgaria) ; CAS (China) ; MoST (China) ; COLCIENCIAS (Colombia) ; MSES (Croatia) ; CSF (Croatia) ; RPF (Cyprus) ; MoER (Estonia) ; ERC IUT (Estonia) ; ERDF (Estonia) ; Academy of Finland (Finland) ; MEC (Finland) ; HIP (Finland) ; CEA (France) ; GSRT (Greece) ; OTKA (Hungary) ; NIH (Hungary) ; DAE (India) ; DST (India) ; IPM (Iran) ; NRF (Republic of Korea) ; WCU (Republic of Korea) ; LAS (Lithuania) ; MOE (Malaysia) ; UM (Malaysia) ; CINVESTAV (Mexico) ; CONACYT (Mexico) ; SEP (Mexico) ; UASLP-FAI (Mexico) ; MBIE (New Zealand) ; PAEC (Pakistan) ; MSHE (Poland) ; NSC (Poland) ; FCT (Portugal) ; JINR (Dubna) ; MON (Russia) ; RosAtom (Russia) ; RAS (Russia) ; RFBR (Russia) ; MESTD (Serbia) ; SEIDI (Spain) ; CPAN (Spain) ; MST (Taipei) ; ThEPCenter (Thailand) ; IPST (Thailand) ; STAR (Thailand) ; NSTDA (Thailand) ; TUBITAK (Turkey) ; TAEK (Turkey) ; SFFR (Ukraine) ; DOE (USA) ; MPG (Germany) ; FOM (The Netherlands) ; NWO (The Netherlands) ; MNiSW (Poland) ; NCN (Poland) ; MEN/IFA (Romania) ; MinES (Russia) ; FANO (Russia) ; MinECo (Spain) ; SNSF (Switzerland) ; SER (Switzerland) ; Marie-Curie programme ; European Research Council ; EPLANET (European Union) ; Leventis Foundation ; A. P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIABelgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic ; Council of Science and Industrial Research, India ; Foundation for Polish Science ; European Union, Regional Development Fund ; Compagnia di San Paolo (Torino) ; Consorzio per la Fisica (Trieste) ; MIUR (Italy) ; Thalis programme ; Aristeia programme ; EU-ESF ; Greek NSRF ; National Priorities Research Program by Qatar National Research Fund ; EPLANET ; Marie Sklodowska-Curie Actions ; ERC (European Union) ; Conseil general de Haute-Savoie ; Labex ENIGMASS ; OCEVU ; Region Auvergne (France) ; XuntaGal (Spain) ; GENCAT (Spain) ; Royal Society (UK) ; Royal Commission for the Exhibition of 1851 (UK) ; MIUR (Italy): 20108T4XTM ; The standard model of particle physics describes the fundamental particles and their interactions via the strong, electromagnetic and weak forces. It provides precise predictions for measurable quantities that can be tested experimentally. The probabilities, or branching fractions, of the strange B meson (B-s(0)) and the B-0 meson decaying into two oppositely charged muons (mu(+) and mu(-)) are especially interesting because of their sensitivity to theories that extend the standard model. The standard model predicts that the B-s(0)->mu(+)mu(-) and B-0 ->mu(+)mu(-) decays are very rare, with about four of the former occurring for every billion B-s(0) mesons produced, and one of the latter occurring for every ten billion B-0 mesons(1). A difference in the observed branching fractions with respect to the predictions of the standard model would provide a direction in which the standard model should be extended. Before the Large Hadron Collider (LHC) at CERN2 started operating, no evidence for either decay mode had been found. Upper limits on the branching fractions were an order of magnitude above the standard model predictions. The CMS (Compact Muon Solenoid) and LHCb(Large Hadron Collider beauty) collaborations have performed a joint analysis of the data from proton-proton collisions that they collected in 2011 at a centre-of-mass energy of seven teraelectronvolts and in 2012 at eight teraelectronvolts. Here we report the first observation of the B-s(0)->mu(+)mu(-) decay, with a statistical significance exceeding six standard deviations, and the best measurement so far of its branching fraction. Furthermore, we obtained evidence for the B-0 ->mu(+)mu(-) decay with a statistical significance of three standard deviations. Both measurements are statistically compatible with standard model predictions and allow stringent constraints to be placed on theories beyond the standard model. The LHC experiments will resume taking data in 2015, recording proton-proton collisions at a centre-of-mass energy of 13 teraelectronvolts, which will approximately double the production rates of B-s(0) and B-0 mesons and lead to further improvements in the precision of these crucial tests of the standard model.
BASE
Elective surgery cancellations due to the COVID-19 pandemic. Global predictive modelling to inform surgical recovery plans
Background: The COVID-19 pandemic has disrupted routine hospital services globally. This study estimated the total number of adult elective operations that would be cancelled worldwide during the 12 weeks of peak disruption due to COVID-19. Methods: A global expert response study was conducted to elicit projections for the proportion of elective surgery that would be cancelled or postponed during the 12 weeks of peak disruption. A Bayesian β-regression model was used to estimate 12-week cancellation rates for 190 countries. Elective surgical case-mix data, stratified by specialty and indication (surgery for cancer versus benign disease), were determined. This case mix was applied to country-level surgical volumes. The 12-week cancellation rates were then applied to these figures to calculate the total number of cancelled operations. Results: The best estimate was that 28 404 603 operations would be cancelled or postponed during the peak 12 weeks of disruption due to COVID-19 (2 367 050 operations per week). Most would be operations for benign disease (90·2 per cent, 25 638 922 of 28 404 603). The overall 12-week cancellation rate would be 72·3 per cent. Globally, 81·7 per cent of operations for benign conditions (25 638 922 of 31 378 062), 37·7 per cent of cancer operations (2 324 070 of 6 162 311) and 25·4 per cent of elective caesarean sections (441 611 of 1 735 483) would be cancelled or postponed. If countries increased their normal surgical volume by 20 per cent after the pandemic, it would take a median of 45 weeks to clear the backlog of operations resulting from COVID-19 disruption. Conclusion: A very large number of operations will be cancelled or postponed owing to disruption caused by COVID-19. Governments should mitigate against this major burden on patients by developing recovery plans and implementing strategies to restore surgical activity safely.
BASE