Les défis actuels pour la recherche dans les Sciences de la vie et de la santé
In: Administration: revue de l'administration territoriale de l'état, Heft 251, S. 109-116
ISSN: 0223-5439
4 Ergebnisse
Sortierung:
In: Administration: revue de l'administration territoriale de l'état, Heft 251, S. 109-116
ISSN: 0223-5439
Genomic sequencing is rapidly transitioning into clinical practice, and implementation into healthcare systems has been supported by substantial government investment, totaling over US$4 billion, in at least 14 countries. These national genomic-medicine initiatives are driving transformative change under real-life conditions while simultaneously addressing barriers to implementation and gathering evidence for wider adoption. We review the diversity of approaches and current progress made by national genomic-medicine initiatives in the UK, France, Australia, and US and provide a roadmap for sharing strategies, standards, and data internationally to accelerate implementation.
BASE
In: Stark , Z , Dolman , L , Manolio , T A , Ozenberger , B , Hill , S L , Caulfied , M J , Levy , Y , Glazer , D , Wilson , J , Lawler , M , Boughtwood , T , Braithwaite , J , Goodhand , P , Birney , E & North , K N 2019 , ' Integrating Genomics into Healthcare: A Global Responsibility ' , American Journal of Human Genetics , vol. 104 , no. 1 , pp. 13-20 . https://doi.org/10.1016/j.ajhg.2018.11.014
Genomic sequencing is rapidly transitioning into clinical practice, and implementation into healthcare systems has been supported by substantial government investment, totaling over US$4 billion, in at least 14 countries. These national genomic-medicine initiatives are driving transformative change under real-life conditions while simultaneously addressing barriers to implementation and gathering evidence for wider adoption. We review the diversity of approaches and current progress made by national genomic-medicine initiatives in the UK, France, Australia, and US and provide a roadmap for sharing strategies, standards, and data internationally to accelerate implementation.
BASE
© 2019 Perdiguero, Gómez, García-Arriaza, Sánchez-Corzo, Sorzano, Wilmschen, von Laer, Asbach, Schmalzl, Peterhoff, Ding, Wagner, Kimpel, Levy, Pantaleo and Esteban. ; The generation of a vaccine against HIV-1 able to induce durable protective immunity continues a major challenge. The modest efficacy (31.2%) of the phase III RV144 clinical trial provided the first demonstration that a prophylactic HIV/AIDS vaccine is achievable but emphasized the need for further refinements of vaccine candidates, formulations, and immunization regimens. Here, we analyzed in mice the immunogenicity profile elicited by different homologous and heterologous prime/boost combinations using the modified rhabdovirus VSV-GP combined with DNA or poxviral NYVAC vectors, all expressing trimeric membrane-bound Env (gp145) of HIV-1 96ZM651 clade C, with or without purified gp140 protein component. In cultured cells infected with recombinant VSV-GP or NYVAC viruses, gp145 epitopes at the plasma membrane were recognized by human HIV-1 broadly neutralizing antibodies (bNAbs). In immunized mice, the heterologous combination of VSV-GP and NYVAC recombinant vectors improved the induction of HIV-1 Env-specific humoral and cellular immune responses compared to homologous prime/boost protocols. Specifically, the combination of VSV-GP in the prime and NYVAC in the boost induced higher HIV-1 Env-specific T cell (CD4/CD8 T cells and T follicular helper -Tfh- cells) immune responses compared to the use of DNA or NYVAC vectors in the prime and VSV-GP in the boost. Such enhanced T cell responses correlated with an enhancement of the Env-specific germinal center (GC) B cell population and with a heavily biased Env-specific response toward the Th1-associated IgG2a and IgG3 subclasses, while the other groups showed a Th2-associated IgG1 bias. In summary, our T and B cell population data demonstrated that VSV-GP-based vectors could be taken into consideration as an optimized immunogenic HIV-1 vaccine candidate component against HIV-1 when used for priming in heterologous combinations with the poxvirus vector NYVAC as a boost. ; This project had received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 681032 (EHVA, European HIV Vaccine Alliance). The 97CN54 gp140 protein was fully supported by a Collaboration for AIDS Vaccine Discovery (CAVD) grant from the Bill & Melinda Gates Foundation (Grant ID: 38645) to Dr. Julie McElrath's group at Fred Hutchinson Cancer Research Center (Seattle, WA, United States).
BASE