Die folgenden Links führen aus den jeweiligen lokalen Bibliotheken zum Volltext:
Alternativ können Sie versuchen, selbst über Ihren lokalen Bibliothekskatalog auf das gewünschte Dokument zuzugreifen.
Bei Zugriffsproblemen kontaktieren Sie uns gern.
8 Ergebnisse
Sortierung:
SSRN
International audience ; Measuring biofuel sustainability requires dealing with a wide variety of complex and conflicting values at stake. Consequently, the biofuel capacity to contribute to one specific value cannot lead to any absolute conclusion about the overall sustainability of biofuel. The scope of the sustainability concept may vary depending on individuals' preferences, the time scale and the geographical region. Based on the 5 pillars sustainability concept that includes social, economic, environmental, legal and cultural considerations, the present study proposes to assess several biofuel sustainability options for France by 2030 through a stakeholder-driven approach. Rather than seeking to reach a consensus, our approach allows us to capture the wide diversity of stakeholders' perspectives and preferences. French stakeholders perceive 22 different sustainability criteria for biofuels with a very low level of agreement between the different segments of professions (feedstock producers, biofuel producers, refining industry, fuel distributors, car manufacturers, end-users, government and NGOs). In order to operationalize the sustainability assessment, a set of indicators has been identified with stakeholders that allows us to measure the capacity of biofuels to fulfill each of their criteria. Seventeen biofuel options were assessed with regards to economic, social, environmental, cultural and legal considerations, allowing the identification of the strengths and weaknesses of each biofuel.
BASE
International audience ; Measuring biofuel sustainability requires dealing with a wide variety of complex and conflicting values at stake. Consequently, the biofuel capacity to contribute to one specific value cannot lead to any absolute conclusion about the overall sustainability of biofuel. The scope of the sustainability concept may vary depending on individuals' preferences, the time scale and the geographical region. Based on the 5 pillars sustainability concept that includes social, economic, environmental, legal and cultural considerations, the present study proposes to assess several biofuel sustainability options for France by 2030 through a stakeholder-driven approach. Rather than seeking to reach a consensus, our approach allows us to capture the wide diversity of stakeholders' perspectives and preferences. French stakeholders perceive 22 different sustainability criteria for biofuels with a very low level of agreement between the different segments of professions (feedstock producers, biofuel producers, refining industry, fuel distributors, car manufacturers, end-users, government and NGOs). In order to operationalize the sustainability assessment, a set of indicators has been identified with stakeholders that allows us to measure the capacity of biofuels to fulfill each of their criteria. Seventeen biofuel options were assessed with regards to economic, social, environmental, cultural and legal considerations, allowing the identification of the strengths and weaknesses of each biofuel.
BASE
International audience ; Measuring biofuel sustainability requires dealing with a wide variety of complex and conflicting values at stake. Consequently, the biofuel capacity to contribute to one specific value cannot lead to any absolute conclusion about the overall sustainability of biofuel. The scope of the sustainability concept may vary depending on individuals' preferences, the time scale and the geographical region. Based on the 5 pillars sustainability concept that includes social, economic, environmental, legal and cultural considerations, the present study proposes to assess several biofuel sustainability options for France by 2030 through a stakeholder-driven approach. Rather than seeking to reach a consensus, our approach allows us to capture the wide diversity of stakeholders' perspectives and preferences. French stakeholders perceive 22 different sustainability criteria for biofuels with a very low level of agreement between the different segments of professions (feedstock producers, biofuel producers, refining industry, fuel distributors, car manufacturers, end-users, government and NGOs). In order to operationalize the sustainability assessment, a set of indicators has been identified with stakeholders that allows us to measure the capacity of biofuels to fulfill each of their criteria. Seventeen biofuel options were assessed with regards to economic, social, environmental, cultural and legal considerations, allowing the identification of the strengths and weaknesses of each biofuel.
BASE
International audience ; Measuring biofuel sustainability requires dealing with a wide variety of complex and conflicting values at stake. Consequently, the biofuel capacity to contribute to one specific value cannot lead to any absolute conclusion about the overall sustainability of biofuel. The scope of the sustainability concept may vary depending on individuals' preferences, the time scale and the geographical region. Based on the 5 pillars sustainability concept that includes social, economic, environmental, legal and cultural considerations, the present study proposes to assess several biofuel sustainability options for France by 2030 through a stakeholder-driven approach. Rather than seeking to reach a consensus, our approach allows us to capture the wide diversity of stakeholders' perspectives and preferences. French stakeholders perceive 22 different sustainability criteria for biofuels with a very low level of agreement between the different segments of professions (feedstock producers, biofuel producers, refining industry, fuel distributors, car manufacturers, end-users, government and NGOs). In order to operationalize the sustainability assessment, a set of indicators has been identified with stakeholders that allows us to measure the capacity of biofuels to fulfill each of their criteria. Seventeen biofuel options were assessed with regards to economic, social, environmental, cultural and legal considerations, allowing the identification of the strengths and weaknesses of each biofuel.
BASE
The production of biofuels from biological resources has been the subject of much controversy. Their opportunity update deserves to be revisited for technological maturity and assess their relevance in response to current environmental concerns.Innovations in biotechnological and chemical processes allow a wide range of liquid and gaseous biofuels; their characteristics concern energy content, compatibility with fossil fuels and openness towards strictly chemical uses.The factors driving this technological market's evolution are the implementation of abundant public policies, the evolution of agronomic practices, the concern for carbon sequestration in soils, the expectations of the aeronautical sector with biokerosenes, and consumer behaviours. From field crops and forests, the mobilizable raw materials have been extended to microalgae, animal, households and plant wastes. Biofuels are then part of the territorial bio-economy and the circular economy. Value chains are more complex than those traditionally focused on biodiesel based on oilseeds and sucrose from beet, cane or starch from wheat or maize. The integration of economic actors and the scaling of markets have been the subject of foresight work at international and French levels. Environmental sustainability is generally proven, with reservations for some sources (soya, oil palm). Biofuels are part of a food-energy-environment nexus. Public policies, if based on the sustainability and social acceptability of biotechnology, will also guide the choices of economic interests alone. This article discusses the research and development work needed to make biofuels a sustainable part of energy policy. ; La production de biocarburants à partir de ressources biologiques a fait l'objet de nombreuses controverses. Leur opportunité mérite d'être revisitée pour la maturité technologique et évaluer leur pertinence en réponse aux préoccupations environnementales actuelles. Les innovations dans les procédés biotechnologiques et chimiques permettent une large gamme de biocarburants liquides et gazeux; leurs caractéristiques concernent le contenu énergétique, la compatibilité avec les carburants fossiles, l'ouverture vers des usages strictement chimiques. Les facteurs d'évolution de ce marché technologique sont l'implantation de politiques publiques foisonnantes, l'évolution des pratiques agronomiques, la préoccupation de séquestration du carbone dans les sols, les attentes du secteur aéronautique avec les biokérosènes, et les comportements des consommateurs. A partir des plantes de grande culture et des forêts, les matières premières mobilisables se sont élargies aux microalgues, aux déchets animaux et végétaux. Les biocarburants s'inscrivent alors dans la bioéconomie territoriale et l'économie circulaire. Les chaines de valeur sont plus complexes que celles anciennes centrées sur le biodiesel à base d'oléagineux et de saccharose de betterave, de canne ou d'amidon de blé ou de maïs. L'intégration des acteurs économiques et le dimensionnement des marchés ont fait l'objet de travaux de prospective aux échelles internationales et francaises. La durabilité environnementale est avérée globalement avec toutefois des réserves pour certaines sources (soja, palmier à huile). Les biocarburants s'insérent dans un nexus alimentation-énergie-environnement. Les politiques publiques, si elles se fondent sur la durabilité et l'acceptabilité sociale des biotechnologies, orienteront aussi les choix des seuls intérêts économiques. Cet article aborde les travaux de recherche et développement nécessaires pour inscrire durablement les biocarburants dans les politiques énergétiques.
BASE
The production of biofuels from biological resources has been the subject of much controversy. Their opportunity update deserves to be revisited for technological maturity and assess their relevance in response to current environmental concerns.Innovations in biotechnological and chemical processes allow a wide range of liquid and gaseous biofuels; their characteristics concern energy content, compatibility with fossil fuels and openness towards strictly chemical uses.The factors driving this technological market's evolution are the implementation of abundant public policies, the evolution of agronomic practices, the concern for carbon sequestration in soils, the expectations of the aeronautical sector with biokerosenes, and consumer behaviours. From field crops and forests, the mobilizable raw materials have been extended to microalgae, animal, households and plant wastes. Biofuels are then part of the territorial bio-economy and the circular economy. Value chains are more complex than those traditionally focused on biodiesel based on oilseeds and sucrose from beet, cane or starch from wheat or maize. The integration of economic actors and the scaling of markets have been the subject of foresight work at international and French levels. Environmental sustainability is generally proven, with reservations for some sources (soya, oil palm). Biofuels are part of a food-energy-environment nexus. Public policies, if based on the sustainability and social acceptability of biotechnology, will also guide the choices of economic interests alone. This article discusses the research and development work needed to make biofuels a sustainable part of energy policy. ; La production de biocarburants à partir de ressources biologiques a fait l'objet de nombreuses controverses. Leur opportunité mérite d'être revisitée pour la maturité technologique et évaluer leur pertinence en réponse aux préoccupations environnementales actuelles. Les innovations dans les procédés biotechnologiques et chimiques permettent une large gamme de biocarburants liquides et gazeux; leurs caractéristiques concernent le contenu énergétique, la compatibilité avec les carburants fossiles, l'ouverture vers des usages strictement chimiques. Les facteurs d'évolution de ce marché technologique sont l'implantation de politiques publiques foisonnantes, l'évolution des pratiques agronomiques, la préoccupation de séquestration du carbone dans les sols, les attentes du secteur aéronautique avec les biokérosènes, et les comportements des consommateurs. A partir des plantes de grande culture et des forêts, les matières premières mobilisables se sont élargies aux microalgues, aux déchets animaux et végétaux. Les biocarburants s'inscrivent alors dans la bioéconomie territoriale et l'économie circulaire. Les chaines de valeur sont plus complexes que celles anciennes centrées sur le biodiesel à base d'oléagineux et de saccharose de betterave, de canne ou d'amidon de blé ou de maïs. L'intégration des acteurs économiques et le dimensionnement des marchés ont fait l'objet de travaux de prospective aux échelles internationales et francaises. La durabilité environnementale est avérée globalement avec toutefois des réserves pour certaines sources (soja, palmier à huile). Les biocarburants s'insérent dans un nexus alimentation-énergie-environnement. Les politiques publiques, si elles se fondent sur la durabilité et l'acceptabilité sociale des biotechnologies, orienteront aussi les choix des seuls intérêts économiques. Cet article aborde les travaux de recherche et développement nécessaires pour inscrire durablement les biocarburants dans les politiques énergétiques.
BASE
In: Chimie et
Frontmatter -- Sommaire -- Avant-propos -- Préface -- Partie 1 Les variations multi-décennales et séculaires du climat -- Chapitre 1 : Le changement climatique : perspectives et implications pour le XXIe siècle -- Chapitre 2 : La compréhension du changement climatique, de ses sources à sa modélisation : questions encore ouvertes ? -- Chapitre 3 : Fluctuations climatiques extrêmes et sociétés au cours du dernier millénaire -- Partie 2 La chimie : un outil pour l'étude du changement climatique -- Chapitre 4 : La chimie de la glace : une archive de notre environnement passé -- Chapitre 5 : La hausse du niveau de la mer : observations et projections -- Chapitre 6 : Chimie atmosphérique et climat -- Partie 3 La transformation du système énergétique pour assainir notre atmosphère et gérer le risque climatique -- Chapitre 7 : Que faire du CO2 ? De la chimie ! -- Chapitre 8 : Actions des entreprises de la chimie au service de la lutte contre le changement climatique -- Chapitre 9 : Prix du baril et énergies renouvelables -- Chapitre 10 : La complexité du réseau et l'électricité verte -- Partie 4 La chimie pour se passer des combustibles fossiles -- Chapitre 11 : La chimie face aux défis de la transformation du système énergétique -- Chapitre 12 : Les microalgues : pour quoi faire ? -- Chapitre 13 : L'hydrogène, vecteur de la transition énergétique