After the 2018 Ebola outbreak in Equateur Province, Democratic Republic of the Congo, we conducted behavioral interviews and collected samples from bushmeat vendors and primates in Mbandaka to test for evidence of Ebola virus exposure. Although participants indicated being aware of Ebola, they did not consider themselves at occupational risk for infection. We found antibodies against Zaire ebolavirus in one participant despite no reported history of disease or contact with infected individuals. Our data underline concerns of possible subclinical or undiagnosed Ebola virus infections and the importance and challenges of risk communication to populations who are occupationally exposed to bushmeat. Following the 2018 Ebola outbreak in Equateur Province, Democratic Republic of the Congo, bushmeat vendors interviewed in Mbandaka indicated being aware of Ebola, but did not consider themselves at occupational risk. Antibodies against Zaire ebolavirus were detected in one participant.
After the 2018 Ebola outbreak in Equateur Province, Democratic Republic of the Congo, we conducted behavioral interviews and collected samples from bushmeat vendors and primates in Mbandaka to test for evidence of Ebola virus exposure. Although participants indicated being aware of Ebola, they did not consider themselves at occupational risk for infection. We found antibodies against Zaire ebolavirus in one participant despite no reported history of disease or contact with infected individuals. Our data underline concerns of possible subclinical or undiagnosed Ebola virus infections and the importance and challenges of risk communication to populations who are occupationally exposed to bushmeat. Following the 2018 Ebola outbreak in Equateur Province, Democratic Republic of the Congo, bushmeat vendors interviewed in Mbandaka indicated being aware of Ebola, but did not consider themselves at occupational risk. Antibodies against Zaire ebolavirus were detected in one participant.
IntroductionDespite men who have sex with men (MSM) being a key population for HIV programming globally, HIV epidemiologic data on MSM in Central Africa are sparse. We measured HIV and syphilis prevalence and the factors associated with HIV infection among MSM in Cameroon.MethodsTwo hundred and seventy‐two and 239 MSM aged ≥18 from Douala and Yaoundé, respectively, were recruited using respondent‐driven sampling (RDS) for this cross‐sectional surveillance study in 2011. Participants completed a structured questionnaire and HIV and syphilis testing. Statistical analyses, including RDS‐weighted proportions, bootstrapped confidence intervals and logistic regressions, were used.ResultsCrude and RDS‐weighted HIV prevalence were 28.6% (73/255) and 25.5% (95% CI 19.1–31.9) in Douala, and 47.3% (98/207) and 44.4% (95% CI 35.7–53.2) in Yaoundé. Active syphilis prevalence in total was 0.4% (2/511). Overall, median age was 24 years, 62% (317/511) of MSM identified as bisexual and 28.6% (144/511) identified as gay. Inconsistent condom use with regular male partners (64.1%; 273/426) and casual male and female partners (48.5%; 195/402) was common, as was the inconsistent use of condom‐compatible lubricants (CCLs) (26.3%; 124/472). In Douala, preferring a receptive sexual role was associated with prevalent HIV infection [adjusted odds ratio (aOR) 2.33, 95% CI 1.02–5.32]. Compared to MSM without HIV infection, MSM living with HIV were more likely to have ever accessed a health service targeting MSM in Douala (aOR 4.88, 95% CI 1.63–14.63). In Yaoundé, MSM living with HIV were more likely to use CCLs (aOR 2.44, 95% CI 1.19–4.97).ConclusionsHigh HIV prevalence were observed and condoms and CCLs were used inconsistently indicating that MSM are a priority population for HIV prevention, treatment and care services in Douala and Yaoundé. Building the capacity of MSM community organizations and improving the delivery and scale‐up of multimodal interventions for MSM that are sensitive to concerns about confidentiality and the complex individual, social, community‐level and policy challenges are needed to successfully engage young MSM in the continuum of HIV care. In addition to scaling up condom and CCL access, evaluating the feasibility of novel biomedical interventions, including antiretroviral pre‐exposure prophylaxis and early antiretroviral therapy for MSM living with HIV in Cameroon, is also warranted.
In this study, HIV strains circulating among military personnel were characterized, in Malabo, the capital city of Equatorial Guinea. One sample was found to be HIV-2 group A while a high degree of genetic diversity was recorded in the pol region of 41 HIV-1-positive samples. CRF02_AG accounted for 53.7% of the strains, and 11 different variants were obtained in the remaining 19 samples: subtype G (n = 3), A3 (n = 2), C (n = 2), CRF26_A5U (n = 2), F2 (n = 1), CRF06 (n = 1), CRF09 (n = 1), CRF11 (n = 1), CRF22 (n = 1), and divergent subtype A (n = 1) and F (n = 1). One strain could not be classified and three were unique recombinants. Analysis of antiretroviral drug resistance mutations revealed two patients each harboring one major mutation, M46I in protease and D67N in reverse transcriptase sequences, respectively. The high genetic diversity and emerging ARV resistance mutations call for frequent surveys and appropriate monitoring of ARV considering the increasing access to ARV in the country.
Recent outbreaks of Ebola virus disease and Zika virus disease highlight the need for disseminating accurate predictions of emerging zoonotic viruses to national governments for disease surveillance and response. Although there are published maps for many emerging zoonotic viruses, it is unknown if there is agreement among different models or if they are concordant with national expert opinion. Therefore, we reviewed existing predictions for five high priority emerging zoonotic viruses with national experts in Cameroon to investigate these issues and determine how to make predictions more useful for national policymakers. Predictive maps relied primarily on environmental parameters and species distribution models. Rift Valley fever virus and Crimean-Congo hemorrhagic fever virus predictions differed from national expert opinion, potentially because of local livestock movements. Our findings reveal that involving national experts could elicit additional data to improve predictions of emerging pathogens as well as help repackage predictions for policymakers.
HCV genotype 4 is prevalent in many African countries, yet little is known about the genotype׳s epidemic history on the continent. We present a comprehensive study of the molecular epidemiology of genotype 4. To address the deficit of data from the Democratic Republic of the Congo (DRC) we PCR amplified 60 new HCV isolates from the DRC, resulting in 33 core- and 48 NS5B-region sequences. Our data, together with genotype 4 database sequences, were analysed using Bayesian phylogenetic approaches. We find three well-supported intra-genotypic lineages and estimate that the genotype 4 common ancestor existed around 1733 (1650–1805). We show that genotype 4 originated in central Africa and that multiple lineages have been exported to north Africa since ~1850, including subtype 4a which dominates the epidemic in Egypt. We speculate on the causes of the historical intra-continental spread of genotype 4, including population movements during World War 2.
Human parvovirus 4 infections are primarily associated with parenteral exposure in western countries. By ELISA, we demonstrate frequent seropositivity for antibody to parvovirus 4 viral protein 2 among adult populations throughout sub-Saharan Africa (Burkina Faso, 37%; Cameroon, 25%; Democratic Republic of the Congo, 35%; South Africa, 20%), which implies existence of alternative transmission routes.
Human parvovirus 4 infections are primarily associated with parenteral exposure in western countries. By ELISA, we demonstrate frequent seropositivity for antibody to parvovirus 4 viral protein 2 among adult populations throughout sub-Saharan Africa (Burkina Faso, 37%; Cameroon, 25%; Democratic Republic of the Congo, 35%; South Africa, 20%), which implies existence of alternative transmission routes.
Abstract Background Zoonotic transmission of simian retroviruses in Central Africa is ongoing and can result in pandemic human infection. While simian foamy virus (SFV) infection was reported in primate hunters in Cameroon and Gabon, little is known about the distribution of SFV in Africa and whether human-to-human transmission and disease occur. We screened 3,334 plasmas from persons living in rural villages in central Democratic Republic of Congo (DRC) using SFV-specific EIA and Western blot (WB) tests. PCR amplification of SFV polymerase sequences from DNA extracted from buffy coats was used to measure proviral loads. Phylogenetic analysis was used to define the NHP species origin of SFV. Participants completed questionnaires to capture NHP exposure information. Results Sixteen (0.5%) samples were WB-positive; 12 of 16 were from women (75%, 95% confidence limits 47.6%, 92.7%). Sequence analysis detected SFV in three women originating from Angolan colobus or red-tailed monkeys; both monkeys are hunted frequently in DRC. NHP exposure varied and infected women lived in distant villages suggesting a wide and potentially diverse distribution of SFV infections across DRC. Plasmas from 22 contacts of 8 WB-positive participants were all WB negative suggesting no secondary viral transmission. Proviral loads in the three women ranged from 14 – 1,755 copies/105 cells. Conclusions Our study documents SFV infection in rural DRC for the first time and identifies infections with novel SFV variants from Colobus and red-tailed monkeys. Unlike previous studies, women were not at lower risk for SFV infection in our population, providing opportunities for spread of SFV both horizontally and vertically. However, limited testing of close contacts of WB-positive persons did not identify human-to-human transmission. Combined with the broad behavioral risk and distribution of NHPs across DRC, our results suggest that SFV infection may have a wider geographic distribution within DRC. These results also reinforce the potential for an increased SFV prevalence throughout the forested regions of Africa where humans and simians co-exist. Our finding of endemic foci of SFV infection in DRC will facilitate longitudinal studies to determine the potential for person-to-person transmissibility and pathogenicity of these zoonotic retroviral infections.
For the first time the genetic diversity among the uniformed personnel in Kinshasa, the capital city of the Democratic Republic of Congo (DRC), a country that has experienced military conflicts since 1998 and in which the global HIV-1/M pandemic started, has now been documented. A total of 94 HIV-1-positive samples, collected in 2007 in Kinshasa garrison settings from informed consenting volunteers, were genetically characterized in the pol region (protease and RT). An extensive diversity was observed, with 51% of the strains corresponding to six pure subtypes (A 23%, C 13.8%, D, G, H, J, and untypable), 15% corresponding to nine different CRFs (01, 02, 11, 13, 25, 26, 37, 43, and 45), and 34% being unique recombinants with one-third being complex mosaic viruses involving three or more different subtypes/CRFs. Only one strain harbored a single mutation, I54V, associated with drug resistance to protease inhibitors. Due to their high mobility and potential risk behavior, HIV infections in military personnel can lead to an even more complex epidemic in the DRC and to a possible increase of subtype C.
Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4(th) Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts.
Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4th Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts.