Open Access#42018
Michałowski, M. J;
Gentile, G;
Krühler, T;
Kuncarayakti, H;
Kamphuis, P;
Hjorth, J;
Berta, S;
D'Elia, V;
Elliott, J;
Galbany, L;
Greiner, J;
Hunt, L. K;
Koprowski, M. P;
Le Floc'h, E;
Nicuesa Guelbenzu, A;
Palazzi, E;
Rasmussen, J;
Rossi, A;
Savaglio, S;
Ugarte Postigo, Antonio de;
van der Werf, P;
Vergani, S. D Context. The host galaxies of gamma-ray bursts (GRBs) have been claimed to have experienced a recent inflow of gas from the intergalactic medium. This is because their atomic gas distribution is not centred on their optical emission and because they are deficient in molecular gas given their high star formation rates (SFRs). Similar studies have not been conducted for host galaxies of relativistic supernovae (SNe), which may have similar progenitors. Aims. The potential similarity of the powering mechanisms of relativistic SNe and GRBs allowed us to make a prediction that relativistic SNe are born in environments similar to those of GRBs, that is, ones which are rich in atomic gas. Here we embark on testing this hypothesis by analysing the properties of the host galaxy NGC 3278 of the relativistic SN 2009bb. This is the first time the atomic gas properties of a relativistic SN host are provided and the first time resolved 21 cm-hydrogen-line (HâI) information is provided for a host of an SN of any type in the context of the SN position. Methods. We obtained radio observations with the Australia Telescope Compact Array (ATCA) covering the Hâ I line, and optical integral field unit spectroscopy observations with the Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT). Moreover, we analysed archival carbon monoxide (CO) and multi-wavelength data for this galaxy. Results. The atomic gas distribution of NGC 3278 is not centred on the optical galaxy centre, but instead around a third of atomic gas resides in the region close to the SN position. This galaxy has a few times lower atomic and molecular gas masses than predicted from its SFR. Its specific SFR (sSFR â SFR/M) is approximately two to three times higher than the main-sequence value, placing it at the higher end of the main sequence, towards starburst galaxies. SN 2009bb exploded close to the region with the highest SFR density and the lowest age, as evident from high Hα EW, corresponding to the age of the stellar population of ~5.5 Myr. Assuming this timescale was the lifetime of the progenitor star, its initial mass would have been close to ~36 M. Conclusions. As for GRB hosts, the gas properties of NGC 3278 are consistent with a recent inflow of gas from the intergalactic medium, which explains the concentration of atomic gas close to the SN position and the enhanced SFR. Super-solar metallicity at the position of the SN (unlike for most GRBs) may mean that relativistic explosions signal a recent inflow of gas (and subsequent star formation), and their type (GRBs or SNe) is determined either (i) by the metallicity of the inflowing gas, so that metal-poor gas results in a GRB explosion and metal-rich gas (for example a minor merger with an evolved galaxy or re-Accretion of expelled gas) results in a relativistic SN explosion without an accompanying GRB, or (ii) by the efficiency of gas mixing (efficient mixing for SN hosts leading to a quick disappearance of metal-poor regions), or (iii) by the type of the galaxy (more metal-rich galaxies would result in only a small fraction of star formation being fuelled by metal-poor gas).© ESO 2018. ; We thank Joanna Baradziej for help to improve this paper, and Giuliano Pignata, Carlos Contreras, and Maximilian Stritzinger for sharing the H-band image. M.J.M. acknowledges the support of the National Science Centre, Poland, through the POLONEZ grant 2015/19/P/ST9/04010; and the UK Science and Technology Facilities Council; this project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 665778. J.H. was supported by a VILLUM FONDEN Investigator grant (project number 16599). L.G. was supported in part by the US National Science Foundation under Grant AST-1311862. L.K.H. acknowledges funding from the INAF PRIN-SKA program 1.05.01.88.04. A.d.U.P. acknowledges support from the European Commission (FP7-PEOPLE-2012-CIG 322307) and from the Spanish project AYA2012-39362-C02-02. S.D.V. is supported by the French National Research Agency (ANR) under contract ANR-16-CE31-0003 BEaPro. The Australia Telescope Compact Array is part of the Australia Telescope National Facility, which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme(s) 095.D-0172(A). This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. We acknowledge the usage of the Hyper-Leda database (http://leda.univ-lyon1.fr). This research has made use of the GHostS database (http://www.grbhosts.org), which is partly funded by Spitzer/NASA grant RSA Agreement No. 1287913; the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration; SAOImage DS9, developed by Smithsonian Astrophysical Observatory (Joye & Mandel 2003); and NASA's Astrophysics Data System Bibliographic Services.